145 research outputs found

    Androgenetic alopecia: a review

    Get PDF
    Purpose Androgenetic alopecia, commonly known as male pattern baldness, is the most common type of progressive hair loss disorder in men. The aim of this paper is to review recent advances in understanding the pathophysiology and molecular mechanism of androgenetic alopecia. Methods Using the PubMed database, we conducted a systematic review of the literature, selecting studies pub- lished from 1916 to 2016. Results The occurrence and development of androgenetic alopecia depends on the interaction of endocrine factors and genetic predisposition. Androgenetic alopecia is character- ized by progressive hair follicular miniaturization, caused by the actions of androgens on the epithelial cells of genetically susceptible hair follicles in androgen-dependent areas. Although the exact pathogenesis of androgenetic alopecia remains to be clari fi ed, research has shown that it is a polygenetic condition. Numerous studies have unequi- vocally identi fi ed two major genetic risk loci for androge- netic alopecia, on the X-chromosome AR ⁄ EDA2R locus and the chromosome 20p11 locus. Conclusions Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms at different genomic loci are associated with androgenetic alopecia development. A number of genes determine the predisposition for androgenetic alopecia in a polygenic fashion. However, further studies are needed before the specific genetic factors of this polygenic condition can be fully explaine

    Advantages of nonlinear intensity components for contrast-based multispectral pansharpening

    Get PDF
    In this study, we investigate whether a nonlinear intensity component can be beneficial for multispectral (MS) pansharpening based on component-substitution (CS). In classical CS methods, the intensity component is a linear combination of the spectral components and lies on a hyperplane in the vector space that contains the MS pixel values. Starting from the hyperspherical color space (HCS) fusion technique, we devise a novel method, in which the intensity component lies on a hyper-ellipsoidal surface instead of on a hyperspherical surface. The proposed method is insensitive to the format of the data, either floating-point spectral radiance values or fixed-point packed digital numbers (DNs), thanks to the use of a multivariate linear regression between the squares of the interpolated MS bands and the squared lowpass filtered Pan. The regression of squared MS, instead of the Euclidean radius used by HCS, makes the intensity component no longer lie on a hypersphere in the vector space of the MS samples, but on a hyperellipsoid. Furthermore, before the fusion is accomplished, the interpolated MS bands are corrected for atmospheric haze, in order to build a multiplicative injection model with approximately de-hazed components. Experiments on GeoEye-1 and WorldView-3 images show consistent advantages over the baseline HCS and a performance slightly superior to those of some of the most advanced methodsPeer ReviewedPostprint (published version

    Identification of a BAZ2A Bromodomain Hit Compound by Fragment Joining

    Full text link
    The bromodomains of BAZ2A and BAZ2B (bromodomain adjacent to zinc finger domain proteins 2) are among the most hard to drug of the 61 human bromodomains. While little is known about the role of BAZ2B, there is strong evidence for the opportunity of targeting BAZ2A in various cancers. Here, a benzimidazole–triazole fragment that binds to the BAZ2A acetyl lysine pocket was identified by a molecular docking campaign and validated by competitive binding assays and X-ray crystallography. Another ligand was observed in close proximity by soaking experiments using the BAZ2A bromodomain preincubated with the benzimidazole–triazole fragment. The crystal structure of BAZ2A with the two ligands was employed to design a few benzimidazole–triazole derivatives with increased affinity. We also present the engineering of a BAZ2A bromodomain mutant for consistent, high-resolution crystallographic studies

    Androgen modulation of pro-inflammatory and antiinflammatory cytokines during preadipocyte differentiation

    Get PDF
    Background: Macrophages and adipocytes contribute to release of cytokines resulting in the chronic inflammatory profile of the metabolic syndrome. The local increase of proinflammatory cytokines impairs adipogenesis, resulting in formation of dysfunctional adipocytes that are unable to store and handle lipids. The altered lipid fluxes in/from adipocytes affect whole-body metabolism. We investigated the role of androgens on adipocyte-derived proinflammatory and anti-inflammatory cytokines during preadipocyte differentiation. Materials and methods: Various differentiation methods were used to obtain full conversion of 3T3-L1 into mature adipocytes. The degree of adipocyte conversion in the presence/absence of dihydrotestosterone (DHT) was analyzed by measuring intracellular triglycerides (Oil Red O staining). The effects of DHT administration on interleukin 1Β (IL-1Β), IL-2, IL-6, IL-10, IL-12, interferon Îł (IFNΓ) and tumor necrosis factor α (TNFα) secretion was measured at days 0, 4, 6 and 8 of differentiation using the SearchLight multiplex protein array. Results: DHT regulates a number of cytokines in committed and mature 3T3-L1 adipocytes. IL-1Β and TNFα were readily suppressed at the very early stages of differentiation. IFNΓ release was inhibited at day 4, but the effect was no longer detectable on day 8. IL-6 and IL-12 were significantly reduced at day 8 of differentiation. Conversely, the differentiation-dependent increase of IL-2 and IL-10 was further stimulated by DHT since day 0. Conclusions: We provide evidence that androgens promote an anti-inflammatory profile that parallels the acquisition of a functional adipocyte phenotype. The crosstalk between androgens, adipocyte-derived mediators of inflammation and intracellular lipid fluxes could have profound implications on metabolism of men with obesity and metabolic syndrome. © 2010, by Walter de Gruyter Berlin New York. All rights reserved

    The 2015 version of the Italian Parametric Earthquake Catalogue (CPTI15)

    Get PDF
    The Italian Parametric Earthquake Catalogue (CPTI) represents the most extensive and reliable source of parameters for earthquakes in Italy and surrounding areas. Since its first introduction in 1999, CPTI benefits from the results of the 30-years-long Italian tradition in historical earthquake research that, still today, keeps on providing a wealth of studies and macroseismic data. Such data have been collected, homogenized and made available through several releases of the related macroseismic database (DBMI). In 2016, the fourth release of CPTI and DBMI, has been finalized. They provide the most advanced and updated sets of macroseismic and instrumental data and parameters, and cover the time-span 1000-2014 with earthquakes with maximum intensity I ≄ 5 or magnitude Mw ≄ 4.0. The catalogue lists 4574 events, 70% of which accompa- nied by intensity data points (about 125’000 as a whole). Macroseismic data derive from 185 studies, 54 of them are new with respect to the previous version CPTI11. Parameters related to historical earthquakes are completely re-assessed, and magnitudes from macroseismic data are derived with new intensity-to-Mw relationships. Such relationships are based on the same dataset that contributes updated instrumental magnitudes to the catalogue. Either Mw from moment tensor solutions or proxies calculated with new published conversion relationship are considered. If available, both macroseismic and instrumental parameters are provided, together with a set of “preferred ones”, which consist of a selection between the macroseismic and the instrumental epicentres, and the weighted average of the macroseismic and instrumental magnitudes.PublishedTrieste, Italy3T. Storia Sismica4T. Sismologia, geofisica e geologia per l'ingegneria sismica4IT. Banche dat

    Identification of a BAZ2A-Bromodomain Hit Compound by Fragment Growing

    Full text link
    BAZ2A is an epigenetic regulator affecting transcription of ribosomal RNA. It is overexpressed in aggressive and recurrent prostate cancer, promoting cellular migration. Its bromodomain is characterized by a shallow and difficult-to-drug pocket. Here, we describe a structure-based fragment-growing campaign for the identification of ligands of the BAZ2A bromodomain. By combining docking, competition binding assays, and protein crystallography, we have extensively explored the interactions of the ligands with the rim of the binding pocket, and in particular ionic interactions with the side chain of Glu1820, which is unique to BAZ2A. We present 23 high-resolution crystal structures of the holo BAZ2A bromodomain and analyze common bromodomain/ligand motifs and favorable intraligand interactions. Binding of some of the compounds is enantiospecific, with affinity in the low micromolar range. The most potent ligand has an equilibrium dissociation constant of 7 ÎŒM and a good selectivity over the paralog BAZ2B bromodomain

    Chondrogenically Primed Human Mesenchymal Stem Cells Persist and Undergo Early Stages of Endochondral Ossification in an Immunocompetent Xenogeneic Model

    Get PDF
    Tissue engineering approaches using progenitor cells such as mesenchymal stromal cells (MSCs) represent a promising strategy to regenerate bone. Previous work has demonstrated the potential of chondrogenically primed human MSCs to recapitulate the process of endochondral ossification and form mature bone in vivo, using immunodeficient xenogeneic models. To further the translation of such MSC-based approaches, additional investigation is required to understand the impact of interactions between human MSC constructs and host immune cells upon the success of MSC-mediated bone formation. Although human MSCs are considered hypoimmunogenic, the potential of chondrogenically primed human MSCs to induce immunogenic responses in vivo, as well as the efficacy of MSC-mediated ectopic bone formation in the presence of fully competent immune system, requires further elucidation. Therefore, the aim of this study was to investigate the capacity of chondrogenically primed human MSC constructs to persist and undergo the process of endochondral ossification in an immune competent xenogeneic model. Chondrogenically differentiated human MSC pellets were subcutaneously implanted to wild-type BALB/c mice and retrieved at 2 and 12 weeks post-implantation. The percentages of CD4(+) and CD8(+) T cells, B cells, and classical/non-classical monocyte subsets were not altered in the peripheral blood of mice that received chondrogenic MSC constructs compared to sham-operated controls at 2 weeks post-surgery. However, MSC-implanted mice had significantly higher levels of serum total IgG compared to sham-operated mice at this timepoint. Flow cytometric analysis of retrieved MSC constructs identified the presence of T cells and macrophages at 2 and 12 weeks post-implantation, with low levels of immune cell infiltration to implanted MSC constructs detected by CD45 and CD3 immunohistochemical staining. Despite the presence of immune cells in the tissue, MSC constructs persisted in vivo and were not degraded/resorbed. Furthermore, constructs became mineralised, with longitudinal micro-computed tomography imaging revealing an increase in mineralised tissue volume from 4 weeks post-implantation until the experimental endpoint at 12 weeks. These findings indicate that chondrogenically differentiated human MSC pellets can persist and undergo early stages of endochondral ossification following subcutaneous implantation in an immunocompetent xenogeneic model. This scaffold-free model may be further extrapolated to provide mechanistic insight to osteoimmunological processes regulating bone regeneration and homeostasis

    Targeting anti-chondrogenic factors for the stimulation of chondrogenesis: A new paradigm in cartilage repair

    Get PDF
    Trauma and age-related cartilage disorders represent a major global cause of morbidity, resulting in chronic pain and disability in patients. A lack of effective therapies, together with a rapidly aging population, creates an impressive clinical and economic burden on healthcare systems. In this scenario, experimental therapies based on transplantation or in situ stimulation of skeletal Mesenchymal Stem/progenitor Cells (MSCs) have raised great interest for cartilage repair. Nevertheless, the challenge of guiding MSC differentiation and preventing cartilage hypertrophy and calcification still needs to be overcome. While research has mostly focused on the stimulation of cartilage anabolism using growth factors, several issues remain unresolved prompting the field to search for novel solutions. Recently, inhibition of anti-chondrogenic regulators has emerged as an intriguing opportunity. Anti-chondrogenic regulators include extracellular proteins as well as intracellular transcription factors and microRNAs that act as potent inhibitors of pro-chondrogenic signals. Suppression of these inhibitors can enhance MSC chondrogenesis and production of cartilage matrix. We here review the current knowledge concerning different types of anti-chondrogenic regulators. We aim to highlight novel therapeutic targets for cartilage repair and discuss suitable tools for suppressing their anti-chondrogenic functions. Further effort is needed to unveil the therapeutic perspectives of this approach and pave the way for effective treatment of cartilage injuries in patients

    Silencing of anti-chondrogenic microRNA-221 in human mesenchymal stem cells promotes cartilage repair in vivo

    Get PDF
    There is a growing demand for the development of experimental strategies for efficient articular cartilage repair. Current tissue engineering-based regenerative strategies make use of human mesenchymal stromal cells (hMSCs). However, when implanted in a cartilage defect, control of hMSCs differentiation towards the chondrogenic lineage remains a significant challenge. We have recently demonstrated that silencing the anti-chondrogenic regulator microRNA-221 (miR-221) was highly effective in promoting in vitro chondrogenesis of monolayered hMSCs in the absence of the chondrogenic induction factor TGF-ÎČ. Here we investigated the feasibility of this approach first in conventional 3D pellet culture and then in an in vivo model. In pellet cultures, we observed that miR-221 silencing was sufficient to drive hMSCs towards chondrogenic differentiation in the absence of TGF-ÎČ. In vivo, the potential of miR-221 silenced hMSCs was investigated by first encapsulating the cells in alginate and then by filling a cartilage defect in an osteochondral biopsy. After implanting the biopsy subcutaneously in nude mice, we found that silencing of miR-221 strongly enhanced in vivo cartilage repair compared to the control conditions (untreated hMSCs or alginate-only). Notably, miR-221 silenced hMSCs generated in vivo a cartilaginous tissue with no sign of collagen type X deposition, a marker of undesired hypertrophic maturation. Altogether our data indicate that silencing miR-221 has a pro-chondrogenic role in vivo, opening new possibilities for the use of hMSCs in cartilage tissue engineering. This article is protected by copyright. All rights reserved
    • 

    corecore