14,471 research outputs found

    Mass Generation from Lie Algebra Extensions

    Full text link
    Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a mechanism by which the boson masses are generated without resource to spontaneous symmetry breaking. It starts from a gauge theory without any additional scalar field. All the couplings predicted by the Weinberg-Salam theory are present, and a few others which are nevertheless consistent within the model.Comment: 11 pages; revtex; title and PACS have been changed; comments included in the manuscrip

    Primordial magnetic fields constrained by CMB anisotropies and dynamo cosmology

    Full text link
    Magneto-curvature stresses could deform magnetic field lines and this would give rise to back reaction and restoring magnetic stresses [Tsagas, PRL (2001)]. Barrow et al [PRD (2008)] have shown in Friedman universe the expansion to be slow down in spatial section of negative Riemann curvatures. From Chicone et al [CMP (1997)] paper, proved that fast dynamos in compact 2D manifold implies negatively constant Riemannian curvature, here one applies the Barrow-Tsagas ideas to cosmic dynamos. Fast dynamo covariant stretching of Riemann slices of cosmic Lobachevsky plane is given. Inclusion of advection term on dynamo equations [Clarkson et al, MNRAS (2005)] is considered. In absence of advection a fast dynamo is also obtained. Viscous and restoring forces on stretching particles decrease, as magnetic rates increase. From COBE data (δBB105\frac{{\delta}B}{B}\approx{10^{-5}}), one computes stretching δVyVy=1.5δBB1.5×105\frac{{\delta}V^{y}}{V^{y}}=1.5\frac{{\delta}B}{B}\approx{1.5{\times}10^{-5}}. Zeldovich et al has computed the maximum magnetic growth rate as γmax8.0×101t1{\gamma}_{max}\approx{8.0{\times}10^{-1}t^{-1}}. From COBE data one computes a lower growth rate for the magnetic field as γCOBE6.0×106t1{\gamma}_{COBE}\approx{6.0{\times}10^{-6}t^{-1}}, well-within Zeldovich et al estimate. Instead of the Harrison value Bt4/3B\approx{t^{{4/3}}} one obtains the lower primordial field B106tB\approx{10^{-6}t} which yields the B106GB\approx{10^{-6}G} at the 1s1s Big Bang time.Comment: Dept of theoretical physics-UERJ-Brasi

    Gravitation and Duality Symmetry

    Full text link
    By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation is not dual symmetric, there is a particular theory in which this symmetry shows up. It is a self dual (or anti-self dual) teleparallel gravity in which, due to the fact that it does not contribute to the interaction of fermions with gravitation, the purely tensor part of torsion is assumed to vanish. The ensuing fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory may eventually be more amenable to renormalization than teleparallel gravity or general relativity.Comment: 7 pages, no figures. Version 2: minor presentation changes, references added. Accepted for publication in Int. J. Mod. Phys.

    Memory effects on the statistics of fragmentation

    Full text link
    We investigate through extensive molecular dynamics simulations the fragmentation process of two-dimensional Lennard-Jones systems. After thermalization, the fragmentation is initiated by a sudden increment to the radial component of the particles' velocities. We study the effect of temperature of the thermalized system as well as the influence of the impact energy of the ``explosion'' event on the statistics of mass fragments. Our results indicate that the cumulative distribution of fragments follows the scaling ansatz F(m)mαexp[(m/m0)γ]F(m)\propto m^{-\alpha}\exp{[-(m/m_0)^\gamma]}, where mm is the mass, m0m_0 and γ\gamma are cutoff parameters, and α\alpha is a scaling exponent that is dependent on the temperature. More precisely, we show clear evidence that there is a characteristic scaling exponent α\alpha for each macroscopic phase of the thermalized system, i.e., that the non-universal behavior of the fragmentation process is dictated by the state of the system before it breaks down.Comment: 5 pages, 8 figure

    Importance of Granular Structure in the Initial Conditions for the Elliptic Flow

    Full text link
    We show effects of granular structure of the initial conditions (IC) of hydrodynamic description of high-energy nucleus-nucleus collisions on some observables, especially on the elliptic-flow parameter v2. Such a structure enhances production of isotropically distributed high-pT particles, making v2 smaller there. Also, it reduces v2 in the forward and backward regions where the global matter density is smaller, so where such effects become more efficacious.Comment: 4 pages, 5 figure
    corecore