15,544 research outputs found

    Negative intrusive thoughts and dissociation as risk factors for self-harm.

    Get PDF
    Relationships between self-harm and vulnerability factors were studied in a general population of 432 participants, of whom 30% reported some experience of self-harm. This group scored higher on dissociation and childhood trauma, had lower self-worth, and reported more negative intrusive thoughts. Among the non-harming group, 10% scored similarly to the self-harmers on the dissociation and self-worth scales, and engaged in potentially maladaptive behaviors that are not defined as indicating clinical self-harm, but experienced fewer negative intrusive thoughts. This group may be at risk of future self-harm if they begin to experience negative intrusive thoughts. If negative intrusive thoughts are playing a causal role, then therapeutic approaches tackling them may help those who are currently self-harming

    Ising model on the Apollonian network with node dependent interactions

    Full text link
    This work considers an Ising model on the Apollonian network, where the exchange constant Ji,j1/(kikj)μJ_{i,j}\sim1/(k_ik_j)^\mu between two neighboring spins (i,j)(i,j) is a function of the degree kk of both spins. Using the exact geometrical construction rule for the network, the thermodynamical and magnetic properties are evaluated by iterating a system of discrete maps that allows for very precise results in the thermodynamic limit. The results can be compared to the predictions of a general framework for spins models on scale-free networks, where the node distribution P(k)kγP(k)\sim k^{-\gamma}, with node dependent interacting constants. We observe that, by increasing μ\mu, the critical behavior of the model changes, from a phase transition at T=T=\infty for a uniform system (μ=0)(\mu=0), to a T=0 phase transition when μ=1\mu=1: in the thermodynamic limit, the system shows no exactly critical behavior at a finite temperature. The magnetization and magnetic susceptibility are found to present non-critical scaling properties.Comment: 6 figures, 12 figure file

    Computer simulation of fatigue under diametrical compression

    Get PDF
    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue, and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows to follow the development of the fracture process on the macro- and micro-level varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings.Comment: 7 pages, 8 figures, RevTex forma

    Modeling river delta formation

    Full text link
    A new model to simulate the time evolution of river delta formation process is presented. It is based on the continuity equation for water and sediment flow and a phenomenological sedimentation/ erosion law. Different delta types are reproduced using different parameters and erosion rules. The structures of the calculated patterns are analyzed in space and time and compared with real data patterns. Furthermore our model is capable to simulate the rich dynamics related to the switching of the mouth of the river delta. The simulation results are then compared with geological records for the Mississippi river
    corecore