4,077 research outputs found

    Erupted Complex Odontoma Mimicking a Mandibular Second Molar

    Get PDF
    Complex odontoma (CO) is considered one of the most common odontogenic lesions, composed by a miscellaneous of dental tissue such as enamel, dentin, pulp and sometimes cementum. They may interfere with the eruption of an associated tooth, being more prevalent in the posterior mandible. CO has been rarely reported as erupted, being considered an intraosseous lesion. This is a case report of a 17-year-old male with a benign fibro-osseous lesion consistent with CO that was located at the left second molar region, above the crown of the impacted mandibular second molar tooth. The lesion was surgically removed, and the tooth had to be extracted, since there was no indication that it could erupt naturally or with orthodontic traction. The histopathological examination confirmed the diagnosis of CO and after 6 months complete bone formation was observed radiographically. An early diagnosis will provide a better treatment option, avoiding tooth extraction or a more damaging surgery

    Panorama sócio-ambiental do enotorno da central Geradora Termelétrica Fortaleza (CGTF) município de Caucaia - CE.

    Get PDF
    bitstream/item/75968/1/doc94-2007panorama-cgtf-4.pd

    Melcherite, trigonal Ba2Na2Mg[Nb6O19]·6H2O, the second natural hexaniobate, from Cajati, São Paulo, Brazil: Description and crystal structure

    Get PDF
    0000-0002-6395-8895© Mineralogical Society of Great Britain and Ireland 2018. This document is the author’s final accepted version of the journal article. You are advised to consult the published version if you wish to cite from it

    Model for erosion-deposition patterns

    Full text link
    We investigate through computational simulations with a pore network model the formation of patterns caused by erosion-deposition mechanisms. In this model, the geometry of the pore space changes dynamically as a consequence of the coupling between the fluid flow and the movement of particles due to local drag forces. Our results for this irreversible process show that the model is capable to reproduce typical natural patterns caused by well known erosion processes. Moreover, we observe that, within a certain range of porosity values, the grains form clusters that are tilted with respect to the horizontal with a characteristic angle. We compare our results to recent experiments for granular material in flowing water and show that they present a satisfactory agreement.Comment: 8 pages, 12 figures, submitted to Phys. Rev.
    • …
    corecore