35 research outputs found

    Theoretical framework of radiation force in surface acoustic waves for modulated particle sorting

    Get PDF
    Sorting specific target entities from sample mixtures is commonly used in many macroscale laboratory processing, such as disease diagnosis or treatment. Downscaling of sorting systems enables less laboratory space and fewer quantities of sample and reagent. Such lab-on-a-chip devices can perform separation functions using passive or active sorting methods. Such a method, acoustic sorting, when used in microfluidics, offers contactless, label-free, non-invasive manipulation of target cells or particles and is therefore the topic of active current research. Our phase-modulated sorting technique complements traditional time-of-flight techniques and offers higher sensitivity separation using a periodic signal. By cycling of this periodic signal, the target entities are gradually displaced compared to the background debris, thereby achieving sorting. In this paper, we extend the knowledge on phase-modulated sorting techniques. Firstly, using numerical simulations, we confirm the sorting role of our proposed primary acoustic radiation force within surface wave devices. Secondly, a threefold agreement between analytical, numerical and experimental sorting trajectories is presented

    Generating airborne ultrasonic amplitude patterns using an open hardware phased array

    Get PDF
    Holographic methods from optics can be adapted to acoustics for enabling novel applications in particle manipulation or patterning by generating dynamic custom-tailored acoustic fields. Here, we present three contributions towards making the field of acoustic holography more widespread. Firstly, we introduce an iterative algorithm that accurately calculates the amplitudes and phases of an array of ultrasound emitters in order to create a target amplitude field in mid-air. Secondly, we use the algorithm to analyse the impact of spatial, amplitude and phase emission resolution on the resulting acoustic field, thus providing engineering insights towards array design. For example, we show an onset of diminishing returns for smaller than a quarter-wavelength sized emitters and a phase and amplitude resolution of eight and four divisions per period, respectively. Lastly, we present a hardware platform for the generation of acoustic holograms. The array is integrated in a single board composed of 256 emitters operating at 40 kHz. We hope that the results and procedures described within this paper enable researchers to build their own ultrasonic arrays and explore novel applications of ultrasonic holograms.This research was funded by the Government of Navarre (FEDER) 0011-1365-2019-000086 and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101017746, TOUCHLESS

    Monte-Carlo based sensitivity analysis of acoustic sorting methods

    Get PDF
    Separation in microfluidic devices is a crucial enabling step for many industrial, biomedical, clinical or chemical applications. Acoustic methods offer contactless, biocompatible, scalable sorting with high degree of reconfigurability and are therefore favored techniques. The literature reports on various techniques to achieve particle separation, but these do not investigate the sensitivity of these methods or are difficult to compare due to the lack of figures of merit. In this paper, we present analytical and numerical sensitivity analysis of the time-of-flight and a phase-modulated sorting scheme against various extrinsic and intrinsic properties. The results reveal great robustness of the phase-modulated sorting method against variations of the flow rate or acoustic energy density, while the time-of-flight method shows lower efficiency drop against size and density variations. The results presented in this paper provide a better understanding of the two sorting methods and offer advice on the selection of the right technique for a given sorting application

    Particle separation in surface acoustic wave microfluidic devices using reprogrammable, pseudo-standing waves

    Get PDF
    We report size and density/compressibility-based particle sorting using on-off quasi-standing waves based on the frequency difference between two ultrasonic transducers. The 13.3 MHz fundamental operating frequency of the surface acoustic wave microfluidic device allows the manipulation of particles on the micrometer scale. Experiments, validated by computational fluid dynamics, were carried out to demonstrate size-based sorting of 5–14.5 μm diameter polystyrene (PS) particles and density/compressibility-based sorting of 10 μm PS, iron-oxide, and poly(methyl methacrylate) particles, with densities ranging from 1.05 to 1.5 g/cm3. The method shows a sorting efficiency of >90% and a purity of >80% for particle separation of 10 μm and 14.5 μm, demonstrating better performance than similar sorting methods recently published (72%–83% efficiency). The sorting technique demonstrates high selectivity separation of particles, with the smallest particle ratio being 1.33, compared to 2.5 in previous work. Density/compressibility-based sorting of polystyrene and iron-oxide particles showed an efficiency of 97 ± 4% and a purity of 91 ± 5%. By varying the sign of the acoustic excitation signal, continuous batch acoustic sorting of target particles to a desired outlet was demonstrated with good sorting stability against variations of the inflow rates

    Particle manipulation by ultrasonic progressive waves

    Get PDF
    AbstractThis paper presents a numerical model to determine the trajectory of sphere particles when submitted to ultrasonic progressive waves. This model assumes that the following forces act on the particle: gravity, buoyancy, viscous forces and acoustic radiation force due to progressive wave. In order not to restrict the model to a small particle size range, the viscous forces that act on the sphere are modeled by an empirical relationship of drag coefficient that is valid for a wide range of Reynolds numbers. The numerical model requires the pressure field radiated by the ultrasonic transducer. The pressure field is obtained experimentally by using a calibrated needle hydrophone. The numerical model validation is done by dropping small glass spheres (on the order of 500 μm diameter) in front of a 1-MHz 30-mm diameter ultrasonic transducer. When the particles cross the transducer face, the radiation force produced by the transducer pushes the particles away. The glass particles trajectory is obtained by a CCD camera. The experimental trajectory shows good agreement with that predicted by the numerical model

    Numerical Simulation of Particle Motion in a Phase Modulated Surface Acoustic Wave Microfluidic Device

    Get PDF
    Contactless sorting of particles and cells in microfluidic devices is beneficial for various industrial and scientific applications. Among such techniques, acoustic sorting methods are favored for their reconfigurability and label-free processing capabilities. A phase modulated sorting method is proposed in this article as an alternative to time-of-flight sorters. The method has been analyzed theoretically and experimentally validated by considering the primary acoustic radiation and viscous drag forces. However, in real devices, acoustic streaming that arises from the damping of acoustic waves within the fluid cavity can adversely affect sorting. This paper presents therefore a numerical study of the influences that the primary radiation force and acoustic streaming can have on the phase modulated sorting method. The article highlights the existence of a critical particle size, above which acoustic streaming effects governing the behavior of small size particles are dominated by the primary radiation force. The model is extended for trajectory simulation in phase-modulated fields and validated with experimental data
    corecore