6 research outputs found

    Aplicación de nuevas tecnologías para el diseño y desarrollo de productos de dorada (Sparus aurata) procedente de acuicultura

    Full text link
    La acuicultura en su conjunto produce hoy en día más de la mitad del pescado consumido en el mundo. El objetivo de la presente tesis doctoral es estudiar la aplicación de diferentes tecnologías para incrementar y diversificar productos procedentes de acuicultura. Concretamente se han analizado las tecnologías de cocción y fritura a vacío, biopreservación y elaboración de texturizados a partir de dorada (Sparus aurata). Para ello en tres capítulos se aborda el estudio de estas tecnologías para el desarrollo de productos alternativos elaborados a base de dorada que permitan la diversificación del sector. El primer capítulo se centra en el estudio del proceso de fritura y cocción a vacío de filetes de dorada para evaluar aspectos relacionados con su calidad como ganancia de aceite, pérdida de agua, cambios de color, etc. con vistas a definir los tiempos óptimos de procesado del producto. En el segundo capítulo se estudia el desarrollo de texturizados, para ello se pretende analizar el efecto de diferentes formulaciones con o sin la adición de fibras sobre las características, fisicoquímicas, sensoriales y microbiológicas de los productos obtenidos con o sin cocción de los mismos. Por último, en el tercer capítulo se analiza la aplicación de técnicas de biopreservación con las que se pretende determinar las condiciones de preparación de los agentes biopreservantes, su forma de aplicación y el efecto sobre la vida útil de los filetes de dorada. Los resultados obtenidos muestran que el tratamiento de fritura a vacío a 110 ºC y 25 kPa con un tiempo comprendido entre tres y cinco minutos aporta un menor contenido graso con unas pérdidas de humedad, peso y encogimiento razonables, por lo que éstas podrían ser unas condiciones adecuadas para la aplicación de dicho tratamiento. Los tratamientos estudiados de cocción a vacío mostraron que no afectan al contenido total en proteínas y grasas del pescado, pero sí que pueden resultar interesantes para la conservación de los ácidos grasos monoinsaturados ya que además mantienen valores más elevados de humedad y presentan un menor encogimiento.Andrés Bello, MD. (2012). Aplicación de nuevas tecnologías para el diseño y desarrollo de productos de dorada (Sparus aurata) procedente de acuicultura [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/15757Palanci

    Improvement of a culinary recipe by applying sensory analysis: Design of the New Tarte Tatin

    Full text link
    During the last decade, knowledge of food science and technology has been applied to Haute Cuisine obtaining great benefits. The most important chefs of the world are keen on gaining knowledge about the physicochemical changes to food after any culinary process, as well as the art of combining different flavors in order to obtain both new flavors and new textures. This could allow chefs to develop new processes and hence gain a competitive advantage in their restaurants. Sensory analysis can be a good tool to develop new products in a restaurant, in particular, new desserts. Consumer response to the sensory properties of food (particularly appearance, flavor, aroma, taste and texture) is an important factor in determining the success of new products. Therefore, the aim of this work was to develop a new dessert, based on the classic French dessert ‘‘Tarte Tatin’’ (an upside down fruit tart, usually made with apples), using sensory analysis as a crucial tool in its design. The preference for different apple products prepared using different methods of cooking, was evaluated by a consumer panel and the statistical analysis showed significant differences (a ¼ 0.05) between the processesGarcía Segovia, P.; Barreto Palacios, VJ.; Iborra Bernad, MDC.; Andrés Bello, MD.; González Carrascosa, R.; Bretón, J.; Martínez Monzó, J. (2012). Improvement of a culinary recipe by applying sensory analysis: Design of the New Tarte Tatin. International Journal of Gastronomy and Food Science. 1(1):54-60. doi:10.1016/j.ijgfs.2011.11.01154601

    Vacuum Frying: An Alternative to Obtain High-Quality Dried Products

    Full text link
    Vacuum frying is an alternative way to improve the quality of the fried food and could reduce the final oil uptake in the product. The product is heated at low pressure thus decreasing the boiling points of the frying oil and the water in the product. Moreover, the absence of air during vacuum frying may inhibit lipid oxidation and enzymatic browning, and therefore, the color and nutrients of samples can be largely preserved. Many food research projects involving snack food industries therefore attempt to understand oil uptake during the vacuum-frying process in order to control and reduce the fat content of fried products without deteriorating their desirable organoleptic characteristics. This article is an update of the state-of-the-art in vacuum-frying technology, showing the effect of pretreatments and frying conditions on quality characteristics of the products. Facts pertaining to equipment and operation conditions are included. On the other hand, mathematical models to describe oil uptake and water loss are also mentioned. The effect of this treatment on color, texture, and nutritional value of the final products is also discussed. © 2011 Springer Science+Business Media, LLC.Andrés Bello, MD.; García Segovia, P.; Martínez Monzó, J. (2011). Vacuum Frying: An Alternative to Obtain High-Quality Dried Products. Food Engineering Reviews. 3(2):63-78. doi:10.1007/s12393-011-9037-5S63783

    Effect of Konjac Glucomannan (KGM) and Carboxymethylcellulose (CMC) on some Physico-Chemical and Mechanical Properties of Restructured Gilthead Sea Bream (Sparus aurata) Products

    Full text link
    The development of restructured fish products and the application of new food ingredients have been used to create attractive new products and also to upgrade low-value species. The aim of this study was to evaluate the effect of konjac gum (KGM) and carboxymethylcellulose (CMC) fibres on the mechanical and physico-chemical properties of microbial transglutaminase treated restructured fish products from gilthead sea bream as well as to evaluate the effect of heat treatment and storage time. Water holding capacity, mechanical properties and colour attributes in fresh and heat-treated samples after 15 days of cold storage were measured. Results showed that these edible gums could be appropriate for making restructured products obtained from gilthead sea bream. In fresh formulations the addition of 10 gkg&#8722;1 of KGM or 10 gkg&#8722;1 of CMC presented a significant effect (p¡Ü0.05) on water activity for fresh samples and the lowest value was obtained for 10 gkg&#8722;1 of KGM (0.975¡À0.002). Water holding capacity and adhesiveness increased due to the presence of these gums in fresh and heat-treated samples. For heattreated samples, KGM significantly reduced (p<0.05) hardness, cohesiveness and chewiness. Cryo-scanning electron microscopy revealed different structures for gels containing fibres. The use of these fibres did not induce significant changes in colour parameters. Fresh or heattreated samples stored for 15 days at 4¡ãC showed changes in relation to the parameters investigated.The authors would like to acknowledge the support of the INNOVA programme of the Polytechnic University of Valencia in the financing of this study. Author Andres-Bello was supported by the Polytechnic University of Valencia under a grant. Author Iborra-Bernad was supported by La Caixa under a grant.Andrés Bello, MD.; Iborra Bernad, MDC.; García-Segovia, P.; Martínez Monzó, J. (2013). Effect of Konjac Glucomannan (KGM) and Carboxymethylcellulose (CMC) on some Physico-Chemical and Mechanical Properties of Restructured Gilthead Sea Bream (Sparus aurata) Products. Food and Bioprocess Technology. 6(1):133-145. doi:10.1007/s11947-011-0765-6S13314561AENOR (1999). Microbiological standards recopilation of food and assimilated and other physical-chemical parameters of health. Enumeration of microorganisms by colony-count technique at 30 degree celsius. Routine method NF V 08-051.Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Din, A. (2009). Physicochemical and functional properties of barley β-glucan as affected by different extraction procedures. International Journal of Food Science and Technology, 44(1), 181–187.Aleson-Carbonell, L., Fernández-López, J., Pérez-Álvarez, J. A., & Kuri, V. (2005). Functional and sensory effects of fibre-rich ingredients on breakfast fresh sausages manufacture. Food Science and Technology International, 11(2), 89–97.Alvarez, C., Couso, I., & Tejada, M. (1999). Microstructure of suwari and kamaboko sardine surimi gels. Journal of the Science of Food and Agriculture, 79(6), 839.AOAC International, Cunniff P. (1995). Official methods of analysis of AOAC International (16th ed.). Arlington: AOAC.Aranceta, J., Serra-Majem, L., Pérez-Rodrigo, C., Ribas-Barba, L., & Delgado-Rubio, A. (2006). Nutrition risk in the child and adolescent population of the Basque country: the enKid Study. The British Journal of Nutrition, 96, S58–S66.Aranceta, J., Pérez, C., Dalmau, J., Gil, A., Lama, R., Martín, M., Martínez, V., Pavón, P., & Suárez, L. (2008). El comedor escolar: situación actual y guía de recomendaciones. Anales de Pediatría, 69(1), 72–88.Arvill, A., & Bodin, L. (1995). Effect of short-term ingestion of konjac glucomannan on serum choresterol in healthy men. The Journal of Clinical Nutrition, 61(3), 585–589.Barbut, S., & Mittal, G. S. (1996). Effects of three cellulose gums on the texture profile and sensory properties of low fat frankfurters. International Journal of Food Science and Technology, 31(3), 241–247.Borderías, A. J., Sánchez-Alonso, I., & Pérez-Mateos, M. (2005). New applications of fibres in foods: addition to fishery products. Trends in Food Science and Technology, 16(10), 458.Bourne, M. C. (1978). Texture profile analysis. Food Technology, 7, 62–66.Cardoso, C., Mendes, R., & Nunes, M. (2007). Effect of transglutaminase and carrageenan on restructured fish products containing dietary fibres. International Journal of Food Science and Technology, 42, 1257–1264.Cardoso, C., Mendes, R., Vaz-Pires, P., & Nunes, M. N. (2009). Effect of dietary fibre and MTGase on the quality of mackerel surimi gels. Journal of the Science of Food and Agriculture, 89(10), 1648–1658.Chattong, U., Apichartsrangkoon, A., & Bell, A. (2007). Effects of hydrocolloid addition and high pressure processing on the rheological properties and microstructure of a commercial ostrich meat product “Yor” (Thai sausage). Meat Science, 76(3), 548–554.Chua, M., Baldwin, T. C., Hocking, T. J., & Chan, K. (2010). Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. Journal of Ethnopharmacology, 128(2), 268–278.Colloca, F., Cerasi, S., & FAO (2009). Fisheries and Aquaculture Department. Programa de información de especies acuáticas, (August/6).Díez-Gañán, L., Galán, I., León, C. M., Gandarillas, A., Zorrilla, B., & Alcaraz, F. (2007). Ingesta de alimentos, energía y nutrientes en la población de 5 a 12 años de la Comunidad de Madrid: resultados de la encuesta de nutrición infantil 2001–2002. Revista Española de Salud Pública, 81(5), 543–558.Emerton, V., & Choi, E. (2008). Essential guide to food additives (3rd ed., p. 336). Leatherhead, Surrey, Cambridge: Leatherhead; Royal Society of Chemistry.Ferry, J. (1948). Protein gels. In M. Anson, Edsall J. T. (Eds.), Advances in protein chemistry (pp. 1–78). Academic.FROM. Ministerio de Medio Ambiente, Medio Rural y Marino (2006). Estudio: El consumo de pescado en comedores escolares. Available at: http://www from mapa es/docs/estudios/52_escolares2006 pdf, Accessed 22 Jul 2008 (22 Jul 2008).Han, M., Zhang, Y., Fei, Y., Xu, X., & Zhou, G. (2009). Effect of microbial transglutaminase on NMR relaxometry and microstructure of pork myofibrillar protein gel. European Food Research and Technology, 228(4), 665–670.Hwang, J. S. (2007). Changes in textural and rheological properties of gels from tilapia muscle proteins induced by high pressure and setting [electronic resource]. Food Chemistry, 104, 746–753.Jianu, C., Cocan, I., Rujescu, C., Rinovetz, A., Bujancă, G., & Jianu, I. (2008). Quantitative colourimetric assessments of carboximethylcellulose in anionic and anionic-ionic food recipes. Journal of Agroalimentary Processes and Technologies, 14(2), 394–400.Lee, C. M., Whu, M. C., & Okada, M. (1992). Ingredient and formulation technology for surimi-based products. In T. C. Lanier & C. M. Lee (Eds.), Surimi technology (pp. 273–302). New York: Marcel Dekker.Luna, L., Universidad de Cantabria. Grupo de Investigación en Acuicultura (2007). El mercado de la dorada y la lubina en la Unión Europea: periodo 2006–2009: Estudio. (pp. 182). Ministerio de Agricultura, Pesca y Alimentación, Centro de Publicaciones, Madrid.Martínez, J. R., & Polanco, I. (2007). El libro blanco de la alimentación escolar. Madrid: McGraw-Hill.Montero, P., Hurtado, J. L., & Pérez-Mateos, M. (2000). Microstructural behaviour and gelling characteristics of myosystem protein gels interacting with hydrocolloids. Food Hydrocolloids, 14(5), 455–461.Moreno, H. M., Carballo, J., & Borderías, J. (2008). Influence of alginate and microbial transglutaminase as binding ingredients on restructured fish muscle processed at low temperature. Journal of the Science of Food and Agriculture, 88(9), 1529–1536.Moreno, H. M., Borderías, A. J., & Baron, C. P. (2010). Evaluation of some physico-chemical properties of restructured trout and hake mince during cold gelation and chilled storage [electronic resource]. Food Chemistry, 120(2), 410–417.National Research Council. (1981). Food chemicals codex (3rd ed., p. 735). Washington: National Academy Press.Okada, M. (1974). Elasticity of kamaboko and its strengthening. In M. Okada, M. Yokozeki, & T. Kinumaki (Eds.), Fish paste products (pp. 180–202). Tokyo: Koseisha Koseikaku.Park, J. W. (1996). Temperature-tolerant fish protein gels using konjac flour. Journal of Muscle Foods, 7(2), 165–174.Park, J. W., & Morrissey, M. T. (2005). Ingredient technology for Surimi and Surimi seafood. In J. W. Park (Ed.), Surimi and surimi seafood (1st ed., pp. 649–702). New York: Marcel Dekker.Pérez-Mateos, M., & Montero, P. (2000). Contribution of hydrocolloids to gelling properties of blue whiting muscle. European Food Research and Technology, 210(6), 383.Pokorný, J., & Kolakowska, A. (2003). Lipid-protein and lipid-saccharide interactions. In Sikorski, Z. E., & Kolakowska, A. (Eds.), Chemical and functional properties of food lipids (pp. 345–362). CRC.Puupponen-Pimïa, R., Aura, A. M., Oksman-Caldentey, K. M., Myllärinen, P., Saarela, M., Mattila-Sandholm, T., & Poutanen, K. (2002). Development of functional ingredients for gut health. Trends in Food Science and Technology, 13, 3–11.Regenstein, J. M. (1989). Are comminuted meat products emulsions or gel matrix? In J. E. Kinsella & W. G. Soucie (Eds.), Food proteins (pp. 178–184). Champaign: American Oil Chemist’s Society.Sánchez, I., Pérez-Mateos, M., & Borderías, J. (2004). Incorporación de fibra dietética a reestructurados: una posibilidad. CTC Alimentación, 19, 10–12.Sánchez-Alonso, I., Haji-Maleki, R., & Borderías, A. J. (2006). Effect of wheat fibre in frozen stored fish muscular gels. European Food Research and Technology, 223(4), 571–576.Sánchez-Alonso, I., Solas, M. T., & Borderías, A. J. (2007). Technological implications of addition of wheat dietary fibre to giant squid (Dosidicus gigas) surimi gels. Journal of Food Engineering, 81(2), 404–411.Schneeman, B. O. (2001). Dietary fibre and gastrointestinal function. In B. V. McCleary & L. Prosky (Eds.), Advanced dietary fiber technology (pp. 168–176). Oxford: Blackwell.Serra, L., Aranceta, J., Ribas, L., Pérez, C., Saavedra, P., & Peña, L. (2003). Obesidad infantil y juvenil en España. Resultados del Estudio enKid (1998–2000). Medicina clínica, 121(19), 725–732.Shimizu, Y., Simidu, W., & Ikeuchi, T. (1954). Studies on jelly strength of kamaboko III. Influence of pH on jelly strength. Bull Jap Society Science Fish, 20, 209–212.Tudorica, C. M. (2002). Nutritional and physicochemical characteristics of dietary fiber enriched pasta. Journal of Agricultural and Food Chemistry, 50(2), 347–356.Xiong, G., Cheng, W., Ye, L., Du, X., Zhou, M., Lin, R., Geng, S., Chen, M., Corke, H., & Cai, Y. (2009). Effects of konjac glucomannan on physicochemical properties of myofibrillar protein and surimi gels from grass carp (Ctenopharyngodon idella) [electronic resource]. Food Chemistry, 116(2), 413–418.Yoon, K. S., & Lee, C. M. (1990). Effect of powered cellulose on the texture and freeze–thaw stability of surimi-based shellfish analog products. Journal of Food Science, 55(1), 87–91.Zayas, J. F. (1997). Functionality of proteins in food (p. 373). Berlin: Springer

    Production of cold-setting restructured fish products from gilthead sea bream (Sparus aurata) using microbial transglutaminase and regular and low-salt level

    Full text link
    In order to extract salt-soluble proteins, such as myofibrillar proteins, sodium chloride is added to restructured products that serve as a binding agent among fish particles. Various additives, such as microbial transglutaminase (MTGase), have been used to reduce NaCl level in restructured products to improve water holding capacity (WHC) and textural properties. The aim of this work was to study the effect of salt level in the physicochemical and mechanical properties of uncooked restructured fish products using MTGase as cold binding agent. Except adhesiveness, the mechanical properties were affected by both salt and MTGase levels (p < 0.05). Samples with regular-salt level (20 g/kg) showed higher values of hardness, springiness and chewiness than low-salt (10 g/kg) samples (p < 0.05). Expressible water ranged from 7% to 10% for low-salt samples and from 4.3% to 4.5% for regular-salt samples, a decrease of the salt level induced a decrease in the WHC. © 2011 Taylor &Francis.The authors acknowledge the support of the INNOVA programme of the Polytechnic University of Valencia in the financing for this study. A. Andres-Bello was supported by the Polytechnic University of Valencia under a grant.Andrés Bello, MD.; García Segovia, P.; Ramirez, JA.; Martínez Monzó, J. (2011). Production of cold-setting restructured fish products from gilthead sea bream (Sparus aurata) using microbial transglutaminase and regular and low-salt level. CyTA - Journal of Food. 9(2):121-125. doi:10.1080/19476337.2010.485701S12112592Baker, K. H., Lanier, T. C. and Green, D. P. Cold restructuring of seafoods using transglutaminase-mediated binding. In2000 IFT Annual meeting book of abstracts(pp. 75–76, 164). pp.75–76. Chicago: IFT Press.Cakli, S., Taskaya, L., Kisla, D., Çelik, U., Ataman, C. A., Cadun, A., … Maleki, R. H. (2004). Production and quality of fish fingers from different fish species. European Food Research and Technology, 220(5-6), 526-530. doi:10.1007/s00217-004-1089-9Horner, W. F. A. (1997). Preservation of fish by curing (drying, salting and smoking). Fish Processing Technology, 32-73. doi:10.1007/978-1-4613-1113-3_2Jiang, S.-T., Hsieh, J.-F., Ho, M.-L., & Chung, Y.-C. (2000). Microbial Transglutaminase Affects Gel Properties of Golden Threadfin-bream and Pollack Surimi. Journal of Food Science, 65(4), 694-699. doi:10.1111/j.1365-2621.2000.tb16074.xKöse, S., Boran, M., & Boran, G. (2006). Storage properties of refrigerated whiting mince after mincing by three different methods. Food Chemistry, 99(1), 129-135. doi:10.1016/j.foodchem.2005.06.047KURAISHI, C., SAKAMOTO, J., YAMAZAKI, K., SUSA, Y., KUHARA, C., & SOEDA, T. (1997). Production of Restructured Meat using Microbial Transglutaminase without Salt or Cooking. Journal of Food Science, 62(3), 488-490. doi:10.1111/j.1365-2621.1997.tb04412.xLEROI, F., & JOFFRAUD, J. J. (2000). Salt and Smoke Simultaneously Affect Chemical and Sensory Quality of Cold-Smoked Salmon during 5°C Storage Predicted Using Factorial Design. Journal of Food Protection, 63(9), 1222-1227. doi:10.4315/0362-028x-63.9.1222Min, B., & Green, B. W. (2008). Use of Microbial Transglutaminase and Nonmeat Proteins to Improve Functional Properties of Low NaCl, Phosphate-Free Patties Made from Channel Catfish (Ictalurus punctatus) Belly Flap Meat. Journal of Food Science, 73(5), E218-E226. doi:10.1111/j.1750-3841.2008.00758.xNÄRHINEN, M., NISSINEN, A., & PENTTILÄ, P.-L. (1998). Salt content labelling of foods in supermarkets in Finland. Agricultural and Food Science, 7(4), 447-453. doi:10.23986/afsci.5611Offer, G., & Trinick, J. (1983). On the mechanism of water holding in meat: The swelling and shrinking of myofibrils. Meat Science, 8(4), 245-281. doi:10.1016/0309-1740(83)90013-xRamı́rez, J. A., Barrera, M., Morales, O. G., & Vázquez, M. (2002). Effect of xanthan and locust bean gums on the gelling properties of myofibrillar protein. Food Hydrocolloids, 16(1), 11-16. doi:10.1016/s0268-005x(01)00033-9Ramírez, J. A., Rodríguez, N. R., Uresti, R. M., Velazquez, G., & Vázquez, M. (2007). Fiber-rich functional fish food from striped mullet (Mugil cephalus) using amidated low methoxyl pectin. Food Hydrocolloids, 21(4), 527-536. doi:10.1016/j.foodhyd.2006.06.002Ramirez, J., Uresti, R., Tellez, S., & Vazquez, M. (2002). Using Salt and Microbial Transglutaminase as Binding Agents in Restructured Fish Products Resembling Hams. Journal of Food Science, 67(5), 1778-1784. doi:10.1111/j.1365-2621.2002.tb08722.xEditorial. (2009). CyTA - Journal of Food, 7(2), 79-82. doi:10.1080/19476330903097968Rørvik, L. (2000). Listeria monocytogenes in the smoked salmon industry. International Journal of Food Microbiology, 62(3), 183-190. doi:10.1016/s0168-1605(00)00334-2Sun, X. D. (2009). Utilization of restructuring technology in the production of meat products: a review. CyTA - Journal of Food, 7(2), 153-162. doi:10.1080/19476330903010193Téllez-Luis, S. J., Uresti, R. M., Ramírez, J. A., & Vázquez, M. (2002). Low-salt restructured fish products using microbial transglutaminase as binding agent. Journal of the Science of Food and Agriculture, 82(9), 953-959. doi:10.1002/jsfa.1132Uresti, R. M., Téllez-Luis, S. J., Ramı́rez, J. A., & Vázquez, M. (2004). Use of dairy proteins and microbial transglutaminase to obtain low-salt fish products from filleting waste from silver carp (Hypophthalmichthys molitrix). Food Chemistry, 86(2), 257-262. doi:10.1016/j.foodchem.2003.09.033Yerlikaya, P., Gokoglu, N., & Uran, H. (2004). Quality changes of fish patties produced from anchovy during refrigerated storage. European Food Research and Technology, 220(3-4), 287-291. doi:10.1007/s00217-004-1035-xYetim, H., & Ockerman, H. W. (1995). The Effects of Egg White, Tumbling and Storage Time on Proximate Composition and Protein Fractions of Restructured Fish Product. Journal of Aquatic Food Product Technology, 4(1), 65-78. doi:10.1300/j030v04n01_0

    Vacuum impregnation as a tool to introduce biopreservatives in gilthead sea bream fillets (Sparus aurata)

    Full text link
    The aim of this study was to determine the possible technological uses of biopreservation and vacuum impregnation techniques to extend shelf life of gilthead sea bream fillets. Two impregnation media were studied: a solution containing lactic acid bacteria (LAB) and a nisin solution. Vacuum impregnation was carried out at 4 °C. Fillets were immersed in a vessel containing the impregnation solution and vacuum was applied during 5 min. After this time atmospheric pressure was restored leaving samples under the liquid for 5 min more. Weight gain, physico-chemical properties (moisture, pH, water activity and TVBN), color and microbiological counts were studied during 15 days of storage at 4 °C. The quantities of biopreservative added to the product after impregnation were about 2.16 × 107 CFU/100 gfish for LAB solution and 5294 IU nisin/100 gfish or 0.13 mgnisin/100 gfish for nisin solution. Changes on physico-chemical properties were not significant between fillets impregnated and fillets without impregnation. Impregnation of fillets caused small changes in color attributes, specially an increase the luminosity (L*). Vacuum impregnation with biopreservative solutions can extend the shelf life of gilthead sea bream fillets, reducing the initial count and/or delaying the growth of microorganisms.Andrés Bello, MD.; De Jesus De Barros, CA.; García Segovia, P.; Pagán Moreno, MJ.; Martínez Monzó, J. (2015). Vacuum impregnation as a tool to introduce biopreservatives in gilthead sea bream fillets (Sparus aurata). Food Science and Technology. 60(2):758-765. doi:10.1016/j.lwt.2014.09.063S75876560
    corecore