412 research outputs found

    On the steady states of the spherically symmetric Einstein-Vlasov system

    Full text link
    Using both numerical and analytical tools we study various features of static, spherically symmetric solutions of the Einstein-Vlasov system. In particular, we investigate the possible shapes of their mass-energy density and find that they can be multi-peaked, we give numerical evidence and a partial proof for the conjecture that the Buchdahl inequality sup⁥r>02m(r)/r<8/9\sup_{r > 0} 2 m(r)/r < 8/9, m(r)m(r) the quasi-local mass, holds for all such steady states--both isotropic {\em and} anisotropic--, and we give numerical evidence and a partial proof for the conjecture that for any given microscopic equation of state--both isotropic {\em and} anisotropic--the resulting one-parameter family of static solutions generates a spiral in the radius-mass diagram.Comment: 34 pages, 18 figures, LaTe

    Sharp bounds on 2m/r for static spherical objects

    Full text link
    Sharp bounds are obtained, under a variety of assumptions on the eigenvalues of the Einstein tensor, for the ratio of the Hawking mass to the areal radius in static, spherically symmetric space-times.Comment: We changed a footnote in which an earlier result of H\aa{}kan Andr\'{e}asson was not described correctl

    Formation of trapped surfaces for the spherically symmetric Einstein-Vlasov system

    Full text link
    We consider the spherically symmetric, asymptotically flat, non-vacuum Einstein equations, using as matter model a collisionless gas as described by the Vlasov equation. We find explicit conditions on the initial data which guarantee the formation of a trapped surface in the evolution which in particular implies that weak cosmic censorship holds for these data. We also analyze the evolution of solutions after a trapped surface has formed and we show that the event horizon is future complete. Furthermore we find that the apparent horizon and the event horizon do not coincide. This behavior is analogous to what is found in certain Vaidya spacetimes. The analysis is carried out in Eddington-Finkelstein coordinates.Comment: 2

    A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein-Vlasov system

    Full text link
    The stability features of steady states of the spherically symmetric Einstein-Vlasov system are investigated numerically. We find support for the conjecture by Zeldovich and Novikov that the binding energy maximum along a steady state sequence signals the onset of instability, a conjecture which we extend to and confirm for non-isotropic states. The sign of the binding energy of a solution turns out to be relevant for its time evolution in general. We relate the stability properties to the question of universality in critical collapse and find that for Vlasov matter universality does not seem to hold.Comment: 29 pages, 10 figure

    Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter

    Get PDF
    We prove a new global existence result for the asymptotically flat, spherically symmetric Einstein-Vlasov system which describes in the framework of general relativity an ensemble of particles which interact by gravity. The data are such that initially all the particles are moving radially outward and that this property can be bootstrapped. The resulting non-vacuum spacetime is future geodesically complete.Comment: 16 page

    Sharp bounds on the critical stability radius for relativistic charged spheres

    Full text link
    In a recent paper by Giuliani and Rothman \cite{GR}, the problem of finding a lower bound on the radius RR of a charged sphere with mass M and charge Q<M is addressed. Such a bound is referred to as the critical stability radius. Equivalently, it can be formulated as the problem of finding an upper bound on M for given radius and charge. This problem has resulted in a number of papers in recent years but neither a transparent nor a general inequality similar to the case without charge, i.e., M\leq 4R/9, has been found. In this paper we derive the surprisingly transparent inequality M≀R3+R9+Q23R.\sqrt{M}\leq\frac{\sqrt{R}}{3}+\sqrt{\frac{R}{9}+\frac{Q^2}{3R}}. The inequality is shown to hold for any solution which satisfies p+2pT≀ρ,p+2p_T\leq\rho, where p≄0p\geq 0 and pTp_T are the radial- and tangential pressures respectively and ρ≄0\rho\geq 0 is the energy density. In addition we show that the inequality is sharp, in particular we show that sharpness is attained by infinitely thin shell solutions.Comment: 20 pages, 1 figur

    Dynamic Deformation Characteristics of a Soft Clay

    Get PDF
    The shear modulus of a soft, high-plastic clay under dynamic loading conditions was studied. The initial shear modulus was determined by cross-hole and down-hole tests in-situ and by resonant column tests in the laboratory. The reduction of shear modulus with increasing shear strain amplitude was determined in-situ by dynamic loading screw-plate tests and in the laboratory by high amplitude resonant column tests. Field and laboratory test results are compared

    Global existence and asymptotic behaviour in the future for the Einstein-Vlasov system with positive cosmological constant

    Full text link
    The behaviour of expanding cosmological models with collisionless matter and a positive cosmological constant is analysed. It is shown that under the assumption of plane or hyperbolic symmetry the area radius goes to infinity, the spacetimes are future geodesically complete, and the expansion becomes isotropic and exponential at late times. This proves a form of the cosmic no hair theorem in this class of spacetimes

    On the area of the symmetry orbits in T2T^2 symmetric spacetimes with Vlasov matter

    Full text link
    This paper treats the global existence question for a collection of general relativistic collisionless particles, all having the same mass. The spacetimes considered are globally hyperbolic, with Cauchy surface a 3-torus. Furthermore, the spacetimes considered are isometrically invariant under a two-dimensional group action, the orbits of which are spacelike 2-tori. It is known from previous work that the area of the group orbits serves as a global time coordinate. In the present work it is shown that the area takes on all positive values in the maximal Cauchy development.Comment: 27 pages, version 2 minor changes and correction

    Existence of initial data satisfying the constraints for the spherically symmetric Einstein-Vlasov-Maxwell system

    Full text link
    Using ODE techniques we prove the existence of large classes of initial data satisfying the constraints for the spherically symmetric Einstein-Vlasov-Maxwell system. These include data for which the ratio of total charge to total mass is arbitrarily large.Comment: 12 page
    • 

    corecore