9 research outputs found

    Regenerative collagen biomembrane: Interim results of a Phase I veterinary clinical trial for skin repair [version 1; referees: 2 approved, 1 approved with reservations]

    Get PDF
    Background: The availability of commercial tissue engineering skin repair products for veterinary use is scarce or non-existent. To assess features of novel veterinary tissue engineered medical devices, it is therefore reasonable to compare with currently available human devices. During the development and regulatory approval phases, human medical devices that may have been identified as comparable to a novel veterinary device, may serve as predicate devices and accelerate approval in the veterinary domain. The purpose of the study was to evaluate safety and efficacy of the biomembrane for use in skin repair indications. Methods: In the study as a whole (3 year total length), 15 patients (animals), dogs and cats (male/female, 2 cm), with a wound depth equivalent to 2nd/3rd degree burns are to be studied from Day 0 to Day 120-240, post-application of the biomembrane. This interim report covers the 5 patients assessed to date and deemed eligible, of which 3 enrolled, and 2 have completed the treatment. Wound beds were prepared and acellular collagen biomembranes (Eva Scientific Ltd, São Paulo, Brazil) applied directly onto the wounds, and sutured at the margins to the patient's adjacent tissue. Wound size over time, healing rate, general skin quality and suppleness were assessed as outcomes. Qualitative (appearance and palpation) and quantitative (based on Image Analysis of photographs) wound assessment techniques were used. Results: Both patients’ wounds healed fully, with no adverse effects, and the healing rate was comparable in both, maxing out at approximately 1 cm2/day. Conclusions: Early results on the biomembrane's safety and efficacy indicate suitability for skin repair usage in veterinary patients

    PHEMA Hydrogels Obtained by Infrared Radiation for Cartilage Tissue Engineering

    Get PDF
    Although the exposure of polymeric materials to radiation is a well-established process, little is known about the relationship between structure and property and the biological behavior of biomaterials obtained by thermal phenomena at 1070 nm wavelength. This study includes results concerning the use of a novel infrared radiation source (ytterbium laser fiber) for the synthesis of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel in order to produce medical devices. The materials were obtained by means of free radical polymerization mechanism and evaluated regarding its cross-linking degree, polymer chain mobility, thermal, and mechanical properties. Their potential use as a biomaterial toward cartilage tissue was investigated through incubation with chondrocytes cells culture by dimethylmethylene blue (DMMB) dye and DNA quantification. Differential scanning calorimetry (DSC) results showed that glass transition temperature (Tg) was in the range 103°C–119°C, the maximum degree of swelling was 70.8%, and indentation fluency test presented a strain of 56%–85%. A significant increase of glycosaminoglycans (GAGs) concentration and DNA content in cells cultured with 40 wt% 2-hydroxyethyl methacrylate was observed. Our results showed the suitability of infrared laser fiber in the free radicals formation and in the rapid polymer chain growth, and further cross-linking. The porous material obtained showed improvements concerning cartilage tissue regeneration

    A novel technique to produce tubular scaffolds based on collagen and elastin

    No full text
    Tubular polymer scaffolds based on tissue engineering techniques have been studied as potential alternatives for vascular regeneration implants. The blood vessels of the cardiovascular system are mainly fibrous, composed of collagen (Col) and elastin (El), and its inner layer consists of endothelial cells. In this work, Col and El were combined with polyurethane (PU), a biocompatible synthetic polymer, and rotary jet spinning, a new and highly productive technique, to produce fibrous scaffolds. The scaffolds produced at 18 000 rpm presented homogeneous, bead‐free, and solvent‐free fibers. The blend formation between PU‐Col‐El was identified by chemical composition analysis and enhanced the thermal stability up to 324°C. The hydrophilic nature of the scaffold was revealed by its low contact angle. Cell viability of human umbilical vein endothelial cells with the scaffold was proven for 72 hours. The combined strategy of rotary jet spinning with a polymer blend containing Col and El was verified as an effective and promising alternative to obtain tubular scaffolds for tissue engineering on a large‐scale productionOnline Version of Record before inclusion in an issueFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2017/13273‐
    corecore