4 research outputs found

    UTILE-Gen: Automated Image Analysis in Nanoscience Using Synthetic Dataset Generator and Deep Learning

    No full text
    This work presents the development and implementation of a deep learning-based workflow for autonomous image analysis in nanoscience. A versatile, agnostic, and configurable tool was developed to generate instance-segmented imaging datasets of nanoparticles. The synthetic generator tool employs domain randomization to expand the image/mask pairs dataset for training supervised deep learning models. The approach eliminates tedious manual annotation and allows training of high-performance models for microscopy image analysis based on convolutional neural networks. We demonstrate how the expanded training set can significantly improve the performance of the classification and instance segmentation models for a variety of nanoparticle shapes, ranging from spherical-, cubic-, rod-shaped to amorphous nanoparticles. Finally, the trained models were deployed in a cloud-based analytics platform for the autonomous particle analysis of microscopy images

    Deep Learning for the Automation of Particle Analysis in Catalyst Layers for Polymer Electrolyte Fuel Cells

    No full text
    The rapidly growing use of imaging infrastructure in the energy materials domain drives significant data accumulation in terms of their amount and complexity. The applications of routine techniques for image processing in materials research are often \textit{ad hoc}, indiscriminate, and empirical, which renders the crucial task of obtaining reliable metrics for quantifications obscure. Moreover, these techniques are expensive, slow, and often involve several preprocessing steps. This paper presents a novel deep learning-based approach for the high-throughput analysis of the particle size distributions from transmission electron microscopy (TEM) images of carbon-supported catalysts for polymer electrolyte fuel cells. Our approach employs training an instance segmentation model, called StarDist [Schmidt et al. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2018, Lecture Notes in Computer Science, vol 11071. Springer, Cham], which resolves the main challenge in the pixel-wise localization of nanoparticles in TEM images: the overlapping particles. The segmentation maps outperform models reported in the literature, and the results on particle size analyses agree well with manual particle size measurements, albeit at a significantly lower cost

    Deep learning for the automation of particle analysis in catalyst layers for polymer electrolyte fuel cells

    No full text
    The rapidly growing use of imaging infrastructure in the energy materials domain drives significant data accumulation in terms of their amount and complexity. The applications of routine techniques for image processing in materials research are often ad hoc, indiscriminate, and empirical, which renders the crucial task of obtaining reliable metrics for quantifications obscure. Moreover, these techniques are expensive, slow, and often involve several preprocessing steps. This paper presents a novel deep learning-based approach for the high-throughput analysis of the particle size distributions from transmission electron microscopy (TEM) images of carbon-supported catalysts for polymer electrolyte fuel cells. A dataset of 40 high-resolution TEM images at different magnification levels, from 10 to 100 nm scales, was annotated manually. This dataset was used to train the U-Net model, with the StarDist formulation for the loss function, for the nanoparticle segmentation task. StarDist reached a precision of 86%, recall of 85%, and an F1-score of 85% by training on datasets as small as thirty images. The segmentation maps outperform models reported in the literature for a similar problem, and the results on particle size analyses agree well with manual particle size measurements, albeit at a significantly lower cost
    corecore