2 research outputs found

    Methanol Mitigation during Manufacturing of Fruit Spirits with Special Consideration of Novel Coffee Cherry Spirits

    Get PDF
    Methanol is a natural ingredient with major occurrence in fruit spirits, such as apple, pear, plum or cherry spirits, but also in spirits made from coffee pulp. The compound is formed during fermentation and the following mash storage by enzymatic hydrolysis of naturally present pectins. Methanol is toxic above certain threshold levels and legal limits have been set in most jurisdictions. Therefore, the methanol content needs to be mitigated and its level must be controlled. This article will review the several factors that influence the methanol content including the pH value of the mash, the addition of various yeast and enzyme preparations, fermentation temperature, mash storage, and most importantly the raw material quality and hygiene. From all these mitigation possibilities, lowering the pH value and the use of cultured yeasts when mashing fruit substances is already common as best practice today. Also a controlled yeast fermentation at acidic pH facilitates not only reduced methanol formation, but ultimately also leads to quality benefits of the distillate. Special care has to be observed in the case of spirits made from coffee by-products which are prone to spoilage with very high methanol contents reported in past studies

    Production of Coffee Cherry Spirits from <i>Coffea arabica</i> Varieties

    No full text
    Coffee pulp, obtained from wet coffee processing, is the major by-product accumulating in the coffee producing countries. One of the many approaches valorising this underestimated agricultural residue is the production of distillates. This research project deals with the production of spirits from coffee pulp using three different Coffea arabica varieties as a substrate. Coffee pulp was fermented for 72 h with a selected yeast strain (Saccharomyces cerevisiae L.), acid, pectin lyase, and water. Several parameters, such as temperature, pH, sugar concentration and alcoholic strength were measured to monitor the fermentation process. Subsequently, the alcoholic mashes were double distilled with stainless steel pot stills and a sensory evaluation of the products was conducted. Furthermore, the chemical composition of fermented mashes and produced distillates were evaluated. It showed that elevated methanol concentrations (>1.3 g/L) were present in mashes and products of all three varieties. The sensory evaluation found the major aroma descriptor for the coffee pulp spirits as being stone fruit. The fermentation and distillation experiments revealed that coffee pulp can be successfully used as a raw material for the production of fruit spirits. However, the spirit quality and its flavour characteristics can be improved with optimised process parameters and distillation equipment
    corecore