152 research outputs found

    GMPLS energy efficiency scheme for green photonic networks

    Get PDF
    Since its emergence the internet has been a significant part of today's modern living. Defined by its interconnections and routing policies, it has fuelled increased demands for provisioning of new more advanced services that are able to dynamically react to changes within the network. These services however, lead to enormous energy consumption in contrast to a global drive for a greener environment. Hence the existence of an optical infrastructure that complies with the principles of zero-carbon emission is imperative. Subsequently, in this paper, we present an energy model of Generalized Multi-Protocol Label Switching (GMPLS) network for more power efficient Green Photonic Networks. We are proposing a greener network design based on a novel routing algorithm to deliver power reduction through implementation of so called "Hibernation" approach. The scheme includes network topology such as group the nodes configuration, segmentation of the link/ports, and wavelength provisioning via partitioning. The performance evaluations of these energy saving schemes are investigated by including various challenging issue on "greening the internet" and reduces carbon footprint. In addition, to study the impact of wavelength request, blocking probability and power consumption in relation to network load is taken into account. A trade-off is observed between energy per bit, wavelengths offered (Erlang) and blocking probability as a result of the idling nodes

    Performance analysis of modified asymmetrically-clipped optical orthogonal frequency-division multiplexing systems

    Get PDF
    A modification to the Asymmetrically-Clipped Optical Orthogonal Frequency-Division Multiplexing (ACO-OFDM) technique is proposed through unipolar encoding. A performance analysis of the Bit Error Rate (BER) is developed and Monte Carlo simulations are carried out to verify the analysis. Results are compared to that of the corresponding ACO-OFDM system under the same bit energy and transmission rate; an improvement of 1 dB is obtained at a BER of 10-4. In addition, the performance of the proposed system in the presence of atmospheric turbulence is investigated using single-input multiple-output (SIMO) configuration and its performance under that environment is compared to that of ACO-OFDM. Energy improvements of 4 dB and 2.2 dB are obtained at a BER of 10-4 for SIMO systems of 1 and 2 photodetectors at the receiver for the case of strong turbulence, respectively

    A priority based routing protocol for wireless sensor networks

    Get PDF
    Recently, the demands on wireless sensor networks have switched from low trafïŹc rate and static topology to more challenging requirements in order to meet the rapid expansion of WSN into various domain applications. This paper proposes a seamless cross layer solution that integrates network layer and medium access control to accommodate some of the new challenges. This new solution allows routing paths being generated dynamically to meet the requirement of potential mobile nodes. Higher data throughput and ïŹ‚ow control are part of the new demands required to be addressed urgently. The proposed solution integrates a priority based MAC to handle congestion and packet loss problems which commonly happened in WSN when an occurrence of event spread into wide are

    Packet equalisation in PONs using adjustable gain-clamped semiconductor optical amplifiers (AGC-SOA)

    Get PDF
    The past ten years have witnessed a dramatic growth in the delivery of high bandwidth services through Passive Optical Networks (PONs), directly to the home or to the kerb. The bursty nature of upstream traffic in a PON (from the user to Optical Network Unit, ONU) combined with a wide dynamic range of signal strength (-15dB to -28dB the difference between a very close Optical Network Terminal (ONT) with a small split ratio and a distant ONT with a high split ratio), places severe demands on the burst mode receiver at the ONU. We report here on an adjustable gain-clamped semiconductor optical amplifier (AGC-SOA) designed to maximize the output saturated power while adjusting gain to regulate the power differences between packets without loss of linearity. This device is shown to be able to modulate gain at rates that are compatible with packet to packet equalisation. Through theoretical analysis coupled with experimental verification, this paper demonstrates for the first time that this is entirely feasible

    The use of UHF transponders as a potential replacement for cattle passports

    Get PDF
    Commercially available UHF RFID tags and interrogators (readers) are surveyed with a view to assessing their suitability as a replacement for cattle passports and preliminary laboratory trials for the tag read/write range are presente

    Wide area cyclic blackout mitigation by supply-demand matching of HVAC counterpart loads

    Get PDF
    Many countries around the world are challenged to meet the escalating demand for power often resulting in frequent blackouts. Domestic standby generation and associated running costs are prohibitive and novel strategies to provision measures that manage blackouts are becoming much sought after. Almost all installed standby generation is not fully utilized and certain amounts of surplus power can be identified. The paper presents a strategy that harnesses the aggregated standby superfluous power to fulfil essential demand in residential areas during cyclic blackouts covering wide areas. The solution has at its foundation, a multiagent distributed demand management system with a supply-demand matching capability. Environmental conditions are monitored periodically and power is distributed accordingly to each sub-district. Customers at sub-districts receive a share of power according to two different distribution criteria and although their immediate allocated power is not the same, their overall daily power ration is equal. Air conditioners are backed up with less power demanding counterparts and a group of options is adaptively clustered. Their usage rights are distributed among customers according to available superfluous power. The approach is evaluated through an extensive emulation framework and results show that the proposed system is capable of providing an acceptable Quality-of-Service (QoS) level during cyclic blackout periods

    The impact of physical conditions on network connectivity in wireless sensor network

    Get PDF
    In Wireless Sensor Networks, end-to-end routing paths need to be established when nodes want to communicate with the desired destination. For nodes assumed to be static, many routing protocols such as Directed Diffusion have been proposed to meet this requirement efficiently. The performance of such routing protocols is relative to the given network connectivity. This paper addresses mobile sensor nodes taking into account the diversity of scattered node density and investigates how physical conditions impact on network connectivity which in turn influences routing performance. Three analysis metrics: path availability, path duration, and interavailable path time are proposed to quantify the impact of different physical conditions on network connectivity. Simulation results show that the network connectivity varies significantly as a function of different physical conditions

    Semiconductor optical amplifiers in avionics

    Get PDF
    RSOAs have been demonstrated to operate within a WDM PON architectures over a >;60nm wavelength range with large path loss capabilities. Two RSOAs enable contiguous operation over the S, C and L bands; results indicate clearly that WDM architectures suitable for avionics with a PLC of >;25dB are possible with only two devices. Performance at extended temperature ranges will be reported later in detai

    Detailed theoretical model for adjustable gain clamped semiconductor optical amplifier (AGC-SOA)

    Get PDF
    The adjustable gain-clamped semiconductor optical amplifier (AGC-SOA) uses two SOAs in a ring-cavity topology: one to amplify the signal and the other to control the gain. The device was designed to maximize the output saturated power while adjusting gain to regulate power differences between packets without loss of linearity. This type of subsystem can be used for power equalisation and linear amplification in packet-based dynamic systems such as passive optical networks (PONs). A detailed theoretical model is presented in this paper to simulate the operation of the AGC-SOA, which gives a better understanding of the underlying gain clamping mechanics. Simulations and comparisons with steady-state and dynamic gain modulation experimental performance are given which validate the model

    A fast, adaptive, and energy-efficient multi-path-multi-channel data collection protocol for wireless sensor networks

    Get PDF
    Energy consumption, traffic adaptability, fast data collection, etc are the major issues in wireless sensor networks (WSNs). Most existing WSN protocols are able to handle one or two of the above issues with the other(s) being compromised. In order to reduce the energy consumption of wireless sensor nodes while having fast data collection under different traffic generating rates, this paper proposes a fast, adaptive, and energy-efficient multi-path-multi-channel (FAEM) data collection protocol. FAEM makes use of the Basketball Net Topology proposed in the literature, in which a multi-parent-multi-child connection table is pre-established at each node; each node is also pre-assigned a receiving channel which is different from those of the neighboring nodes so as to eliminate the transmission interference. During data transmission, time is divided into duty cycles, and each consists of two phases, namely distributed iterative scheduling phase and slot-based packet forwarding phase. The former is to match parents and children of the entire WSN in a distributed manner in order to determine whether a node should be in upload (to which parent), download (from which child), or sleep mode in a particular slot; while the latter is for nodes to take action according to the schedule. Simulation shows that our protocol is able to achieve lower energy consumption, data reliability and low latency even during a high traffic load
    • 

    corecore