314 research outputs found

    Short-Term Prognosis of Juvenile Myocardial Infarction: Role of Plasma Viscosity

    Get PDF
    In our early research1 regarding the hemorheological pattern in patients with acute myocardial infarction (AMI) with a mean age of 61.45 + 10.99 years, we showed that the major hemorheological parameters were almost normalized 2 weeks after the acute event. In the last decade, we focused on hemorheological parameters in juvenile myocardial infarction (JMI), defined as AMI in patients aged 45 years, in the \u2018\u2018Sicilian study on juvenile myocardial infarction\u2019\u2019

    Cavity QED of Strongly Correlated Electron Systems: A No-go Theorem for Photon Condensation

    Full text link
    In spite of decades of work it has remained unclear whether or not superradiant quantum phases, referred to here as photon condensates, can occur in equilibrium. In this Letter, we first show that when a non-relativistic quantum many-body system is coupled to a cavity field, gauge invariance forbids photon condensation. We then present a microscopic theory of the cavity quantum electrodynamics of an extended Falicov-Kimball model, showing that, in agreement with the general theorem, its insulating ferroelectric and exciton condensate phases are not altered by the cavity and do not support photon condensation.Comment: Reference list updated and minor typos correcte

    Many-body localized quantum batteries

    Get PDF
    The collective and quantum behavior of many-body systems may be harnessed to achieve fast charging of energy storage devices, which have been recently dubbed quantum batteries. In this paper, we present an extensive numerical analysis of energy flow in a quantum battery described by a disordered quantum Ising chain Hamiltonian, whose equilibrium phase diagram presents many-body localized (MBL), Anderson localized (AL), and ergodic phases. We demonstrate that (i) the low amount of entanglement of the MBL phase guarantees much better work extraction capabilities, measured by the ergotropy, than the ergodic phase and (ii) interactions suppress temporal energy fluctuations in comparison with those of the noninteracting AL phase. Finally, we show that the statistical distribution of values of the optimal charging time is a clear-cut diagnostic tool of the MBL phase

    QueryTogether: Enabling entity-centric exploration in multi-device collaborative search

    Get PDF
    Collaborative and co-located information access is becoming increasingly common. However, fairly little attention has been devoted to the design of ubiquitous computing approaches for spontaneous exploration of large information spaces enabling co-located collaboration. We investigate whether an entity-based user interface provides a solution to support co-located search on heterogeneous devices. We present the design and implementation of QueryTogether, a multi-device collaborative search tool through which entities such as people, documents, and keywords can be used to compose queries that can be shared to a public screen or specific users with easy touch enabled interaction. We conducted mixed-methods user experiments with twenty seven participants (nine groups of three people), to compare the collaborative search with QueryTogether to a baseline adopting established search and collaboration interfaces. Results show that QueryTogether led to more balanced contribution and search engagement. While the overall s-recall in search was similar, in the QueryTogether condition participants found most of the relevant results earlier in the tasks, and for more than half of the queries avoided text entry by manipulating recommended entities. The video analysis demonstrated a more consistent common ground through increased attention to the common screen, and more transitions between collaboration styles. Therefore, this provided a better fit for the spontaneity of ubiquitous scenarios. QueryTogether and the corresponding study demonstrate the importance of entity based interfaces to improve collaboration by facilitating balanced participation, flexibility of collaboration styles and social processing of search entities across conversation and devices. The findings promote a vision of collaborative search support in spontaneous and ubiquitous multi-device settings, and better linking of conversation objects to searchable entities

    Coexisting with the alien: Evidence for environmental control on trophic interactions between a native (Atherina boyeri) and a non-indigenous fish species (Gambusia holbrooki) in a Mediterranean coastal ecosystem

    Get PDF
    Biological invasions are a widespread problem worldwide, as invasive non-indigenous species (NIS) may affect native populations through direct (e. g., predation) or indirect (e.g., competition) trophic interactions, leading to changes in the food web structure. The trophic relationships of the invasive eastern mosquitofish Gambusia holbrooki and the native big-scale sand smelt Atherina boyeri coexisting in three Mediterranean coastal ponds characterized by different trophic statuses (from oligotrophic to hypereutrophic) were assessed in spring through isotopic niche analysis and Bayesian mixing models. The two fish relied on the distinctive trophic pathways in the different ponds, with the evidence of minimal interspecific niche overlap indicating site-specific niche divergence mechanisms. In more detail, under hypereutrophic and mesotrophic conditions, the two species occupied different trophic positions but relying on a single trophic pathway, whereas, under oligotrophic conditions, both occupied a similar trophic position but belonging to distinct trophic pathways. Furthermore, the invaders showed the widest niche breadth while the native species showed a niche compression and displacement in the ponds at a higher trophic status compared to the oligotrophic pond. We argue that this may be the result of an asymmetric competition arising between the two species because of the higher competitive ability of G. holbrooki and may have been further shaped by the trophic status of the ponds, through a conjoint effect of prey availability and habitat complexity. While the high trophic plasticity and adaptability of both species to different environmental features and resource availability may have favored their coexistence through site-specific mechanisms of niche segregation, we provide also empirical evidence of the importance of environmental control in invaded food webs, calling for greater attention to this aspect in future studies

    Flexible entity search on surfaces

    Get PDF
    Surface computing allows flexible search interaction where users can manipulate the representation of entities recommended for them to create new queries or augment existing queries by taking advantage of increased screen estate and almost physical tactile interaction. We demonstrate a search system based on 1) Direct Manipulation of Entity Representation on Surfaces and 2) Entity Recommendation and Document Retrieval. Entities are modeled as a knowledge-graph and the relevances of entities are computed using the graph structure. Users can manipulate the representation of entities via spatial grouping and assigning preferences on entities. Our contribution can help to design effective information exploration systems that take advantage of large surfaces

    Ultra-stable charging of fast-scrambling SYK quantum batteries

    Get PDF
    Collective behavior strongly influences the charging dynamics of quantum batteries (QBs). Here, we study the impact of nonlocal correlations on the energy stored in a system of N QBs. A unitary charging protocol based on a Sachdev-Ye-Kitaev (SYK) quench Hamiltonian is thus introduced and analyzed. SYK models describe strongly interacting systems with nonlocal correlations and fast thermalization properties. Here, we demonstrate that, once charged, the average energy stored in the QB is very stable, realizing an ultraprecise charging protocol. By studying fluctuations of the average energy stored, we show that temporal fluctuations are strongly suppressed by the presence of nonlocal correlations at all time scales. A comparison with other paradigmatic examples of many-body QBs shows that this is linked to the collective dynamics of the SYK model and its high level of entanglement. We argue that such feature relies on the fast scrambling property of the SYK Hamiltonian, and on its fast thermalization properties, promoting this as an ideal model for the ultimate temporal stability of a generic QB. Finally, we show that the temporal evolution of the ergotropy, a quantity that characterizes the amount of extractable work from a QB, can be a useful probe to infer the thermalization properties of a many-body quantum system

    Designing for Exploratory Search on Touch Devices

    Get PDF
    Exploratory search confront users with challenges in expressing search intents as the current search interfaces require investigating result listings to identify search directions, iterative typing, and reformulating queries. We present the design of Exploration Wall, a touch-based search user interface that allows incremental exploration and sense-making of large information spaces by combining entity search, flexible use of result entities as query parameters, and spatial configuration of search streams that are visualized for interaction. Entities can be flexibly reused to modify and create new search streams, and manipulated to inspect their relationships with other entities. Data comprising of task-based experiments comparing Exploration Wall with conventional search user interface indicate that Exploration Wall achieves significantly improved recall for exploratory search tasks while preserving precision. Subjective feedback supports our design choices and indicates improved user satisfaction and engagement. Our findings can help to design user interfaces that can effectively support exploratory search on touch devices

    Crowdboard: Augmenting in-person idea generation with real-time crowds

    Get PDF
    Online crowds can help infuse creativity into the design process, but traditional strategies for leveraging them, such as large-scale ideation platforms, require time and organizational effort in order to obtain results. We propose a new method for crowd-based ideation that simplifies the process by having smaller crowds join in-person ideators during synchronous creative sessions. Our system Crowdboard allows online crowds to provide real-time creative input during early-stage design activities, such as brainstorming or concept mapping. The system enables in-person ideators to develop ideas on a physical or digital whiteboard which is augmented with real-time creative input from online participants who see and hear a live broadcast of the meeting. We validate Crowdboard via two user studies in which dyads of in-person ideators brainstormed with the help of crowd ideators. Our studies suggest that Crowdboard can effectively enhance ongoing brainstorming sessions, but also revealed key challenges for how to better facilitate interactions among in-person and crowd ideator

    Persistent post-traumatic headache and migraine: Pre-clinical comparisons

    Get PDF
    Background: Oftentimes, persistent post traumatic headache (PPTH) and migraine are phenotypically similar and the only clinical feature that differentiate them is the presence of a mild or moderate traumatic brain injury (mTBI). The aim of this study is to describe the differences in brain area and in biochemical cascade after concussion and to define the efficacy and safety of treatments in use. Methods: Sources were chosen in according to the International Classification of Headache Disorder (ICHD) criteria. Results: The articles demonstrated a significant difference between PPTH and migraine regarding static functional connectivity (sFC) and dynamic functional connectivity (dFC) in brain structure that could be used for exploring the pathophysiological mechanisms in PPTH. Many studies described a cascade of neurometabolic changes that occur after traumatic brain injury. These variations are associated to the mechanism occurring when developing a PPTH. Conclusions: The state of art of this important topic show how although the mechanisms underlying the development of the two different diseases are different, the treatment of common migraine is efficacious in patients that have developed a post traumatic form
    • …
    corecore