8,787 research outputs found

    Two-dimensional topological field theories as taffy

    Full text link
    In this paper we use trivial defects to define global taffy-like operations on string worldsheets, which preserve the field theory. We fold open and closed strings on a space X into open strings on products of multiple copies of X, and perform checks that the "taffy-folded" worldsheets have the same massless spectra and other properties as the original worldsheets. Such folding tricks are a standard method in the defects community; the novelty of this paper lies in deriving mathematical identities to check that e.g. massless spectra are invariant in topological field theories. We discuss the case of the B model extensively, and also derive the same identities for string topology, where they become statements of homotopy invariance. We outline analogous results in the A model, B-twisted Landau-Ginzburg models, and physical strings. We also discuss the understanding of the closed string states as the Hochschild homology of the open string algebra, and outline possible applications to elliptic genera.Comment: 61 pages, LaTeX; v2: typos fixe

    Hall plateau diagram for the Hofstadter butterfly energy spectrum

    Full text link
    We extensively study the localization and the quantum Hall effect in the Hofstadter butterfly, which emerges in a two-dimensional electron system with a weak two-dimensional periodic potential. We numerically calculate the Hall conductivity and the localization length for finite systems with the disorder in general magnetic fields, and estimate the energies of the extended levels in an infinite system. We obtain the Hall plateau diagram on the whole region of the Hofstadter butterfly, and propose a theory for the evolution of the plateau structure with increasing disorder. There we show that a subband with the Hall conductivity ne2/hn e^2/h has ∣n∣|n| separated bunches of extended levels, at least for an integer n≤2n \leq 2. We also find that the clusters of the subbands with identical Hall conductivity, which repeatedly appear in the Hofstadter butterfly, have a similar localization property.Comment: 9 pages, 12 figure

    Improvement of acoustic theory of ultrasonic waves in dilute bubbly liquids

    Get PDF
    The theory of the acoustics of dilute bubbly liquids is reviewed, and the dispersion relation is modified by including the effect of liquid compressibility on the natural frequency of the bubbles. The modified theory is shown to more accurately predict the trend in measured attenuation of ultrasonic waves. The model limitations associated with such high-frequency waves are discussed

    Magnetotransport Properties of Antiferromagnetic YBa_2Cu_3O_6.25 Single Crystals

    Full text link
    In-plane and out-of-plane magnetoresistivities (MR) of antiferromagnetic YBa_2Cu_3O_6.25 single crystals were measured in magnetic fields H applied along the (ab) plane. In-plane MR is a superposition of two components: The first component is strongly in-plane anisotropic, changing sign from negative when H is parallel to the electrical current I to positive when H is perpendicular to I. The second component is positive, quadratic in H, and isotropic in the (ab)-plane. The out-of-plane MR displays a fourfold symmetry upon in-plane rotation of the magnetic field, with maxima along the easy axes of antiferromagnetic spin ordering and minima along unfavorable directions of spin orientation (45 degrees from the Cu-O-Cu bonds).Comment: 8 pages, 4 figure

    Electron Interactions and Scaling Relations for Optical Excitations in Carbon Nanotubes

    Full text link
    Recent fluorescence spectroscopy experiments on single wall carbon nanotubes reveal substantial deviations of observed absorption and emission energies from predictions of noninteracting models of the electronic structure. Nonetheless, the data for nearly armchair nanotubes obey a nonlinear scaling relation as a function the tube radius RR. We show that these effects can be understood in a theory of large radius tubes, derived from the theory of two dimensional graphene where the coulomb interaction leads to a logarithmic correction to the electronic self energy and marginal Fermi liquid behavior. Interactions on length scales larger than the tube circumference lead to strong self energy and excitonic effects that compete and nearly cancel so that the observed optical transitions are dominated by the graphene self energy effects.Comment: 4 page

    GeV Emission from Prompt and Afterglow Phases of Gamma-Ray Bursts

    Get PDF
    We investigate the GeV emission from gamma-ray bursts (GRBs), using the results from the Energetic Gamma Ray Experimental Telescope (EGRET), and in view of the Gamma-ray Large Area Space Telescope (GLAST). Assuming that the conventional prompt and afterglow photons originate from synchrotron radiation, we compare an accompanying inverse-Compton component with EGRET measurements and upper limits on GeV fluence, taking Klein-Nishina feedback into account. We find that EGRET constraints are consistent with the theoretical framework of the synchrotron self-Compton model for both prompt and afterglow phases, and discuss constraints on microphysical parameters in both phases. Based on the inverse-Compton model and using EGRET results, we predict that GLAST would detect GRBs with GeV photons at a rate >~20 yr^{-1} from each of the prompt and afterglow phases. This rate applies to the high-energy tail of the prompt synchrotron emission and to the inverse-Compton component of the afterglow. Theory predicts that in a large fraction of the cases where synchrotron GeV prompt emission would be detected by GLAST, inverse-Compton photons should be detected as well at high energies >~10 GeV. Therefore GLAST will enable a more precise test of the high-energy emission mechanism. Finally, we show that the contribution of GRBs to the flux of the extragalactic gamma-ray background measured with EGRET is at least 0.01% and likely around 0.1%.Comment: 11 pages, 7 figures; accepted by Ap

    Stochastic Liouville Equations for Femtosecond Stimulated Raman Spectroscopy

    Full text link
    Electron and vibrational dynamics of molecules are commonly studied by subjecting them to two interactions with a fast actinic pulse that prepares them in a nonstationary state and after a variable delay period TT, probing them with a Raman process induced by a combination of a broadband and a narrowband pulse. This technique known as femtosecond stimulated Raman spectroscopy (FSRS) can effectively probe time resolved vibrational resonances. We show how FSRS signals can be modeled and interpreted using the stochastic Liouville equations (SLE) originally developed for NMR lineshapes. The SLE provides a convenient simulation protocol that can describe complex dynamics due to coupling to collective coordinates at much lower cost that a full dynamical simulation. The origin of the dispersive features which appear when there is no separation of timescales between vibrational variations and dephasing is clarified

    Cluster decomposition, T-duality, and gerby CFT's

    Get PDF
    In this paper we study CFT's associated to gerbes. These theories suffer from a lack of cluster decomposition, but this problem can be resolved: the CFT's are the same as CFT's for disconnected targets. Such theories also lack cluster decomposition, but in that form, the lack is manifestly not very problematic. In particular, we shall see that this matching of CFT's, this duality between noneffective gaugings and sigma models on disconnected targets, is a worldsheet duality related to T-duality. We perform a wide variety of tests of this claim, ranging from checking partition functions at arbitrary genus to D-branes to mirror symmetry. We also discuss a number of applications of these results, including predictions for quantum cohomology and Gromov-Witten theory and additional physical understanding of the geometric Langlands program.Comment: 61 pages, LaTeX; v2,3: typos fixed; v4: writing improved in several sections; v5: typos fixe

    Effect of the superconducting wiggler on the DELSY beam dynamics

    Full text link
    The project DELSY is being under development at JINR, Dubna, Russia. This synchrotron radiation source is dedicated to the investigation on condensed matter physics, atomic physics, biology, medicine, chemistry, micromechanics, lithography and others. The storage ring DELSY is an electron storage ring with the beam energy 1.2 GeV and 4 straight sections to accommodate accelerator equipment and insertion devices. One of the straight sections is intended for a 10 T superconducting wiggler (wavelength shifter) and one for the undulator with 150 periods and a magnetic field of 0.75 T. The wiggler will influence many aspects of beam dynamics: linear motion, dynamic aperture, emittance, damping times etc. The problem is rather serious for the DELSY machine because the energy of the electron beam is small while the wiggler's magnetic field is strong. In this paper we consider two models of the wiggler's magnetic field with and without the focusing caused by the sextupolar field of the wiggler as we need to develop the requirements to the wiggler design. We study the influence of the 10 T wiggler on the beam dynamics in the DELSY storage ring and propose a possible scheme to cure it. The combined work of the insertion device is presented too.Comment: 17 pages, submitted to journal NIM
    • …
    corecore