51 research outputs found

    Total syntheses of disulphated glycosphingolipid SB1a and the related monosulphated SM1a

    Get PDF
    Total syntheses of two natural sulphoglycolipids, disulphated glycosphingolipid SB1a and the structurally related monosulphated SM1a, are described. They have common glycan sequences and ceramide moieties and are associated with human epithelial carcinomas. The syntheses featured efficient glycan assembly and the glucosyl ceramide cassette as a versatile building block. The binding of the synthetic sulphoglycolipids by the carcinoma-specific monoclonal antibody AE3 was investigated using carbohydrate microarray technology

    Sialyl LewisX mimic-decorated liposomes for anti-angiogenic everolimus delivery to E-selectin expressing endothelial cells

    Get PDF
    In this study, we developed novel E-selectin-targeting liposomes, i.e., 3′-(1-carboxy)ethyl sialyl LewisX (3′-CE sLeX) mimic liposomes, for targeted delivery of everolimus (EVE) in anti-angiogenic therapy. We investigated the uptake and efficacy of these E-selectin targeting liposomes in inflammatory cytokine-treated human umbilical vein endothelial cells (HUVECs). The uptake of EVE in 3′-CE sLeX mimic liposomes increased steadily and almost caught up with the uptake of plain EVE at 3 h, which was higher than that in PEGylated liposomes (PEG-liposomes). Inhibition of uptake by anti-E-selectin antibody suggested involvement of E-selectin-mediated endocytotic processes. Migration in cells treated with EVE/3′-CE sLeX mimic liposomes was suppressed by more than half when compared to the control. This treatment was also seen to significantly inhibit the formation of capillary tubes and networks. In addition, Thr389 phosphorylation of pS6 kinase, as a marker of mTOR activity, was remarkably suppressed to less than endogenous levels by EVE/3′-CE sLeX mimic liposomes. In conclusion, the present study demonstrated that EVE/3′-CE sLeX mimic liposomes were intracellularly taken up by E-selectin and prompted anti-angiogenic effects of EVE involved in the mTOR signaling pathway. However, moderate retention of EVE in the liposomes might limit the targeting ability of 3′-CE sLeX mimic liposomes

    Development of new ganglioside probes and unraveling of raft domain structure by single-molecule imaging

    Get PDF
    Gangliosides are involved in a variety of biological roles and are a component of lipid rafts found in cell plasma membranes (PMs). Gangliosides are especially abundant in neuronal PMs and are essential to their physiological functions. However, the dynamic behaviors of gangliosides have not been investigated in living cells due to a lack of fluorescent probes that behave like their parental molecules. We have recently developed, using an entirely chemical method, four new ganglioside probes (GM1, GM2, GM3, and GD1b) that act similarly to their parental molecules in terms of raft partitioning and binding affinity. Using single fluorescent-molecule imaging, we have found that ganglioside probes dynamically enter and leave rafts featuring CD59, a GPI-anchored protein. This occurs both before and after stimulation. The residency time of our ganglioside probes in rafts with CD59 oligomers was 48 ms, after stimulation. The residency times in CD59 homodimer and monomer rafts were 40 ms and 12 ms, respectively. In this review, we introduce an entirely chemical-based ganglioside analog synthesis method and describe its application in single-molecule imaging and for the study of the dynamic behavior of gangliosides in cell PMs. Finally, we discuss how raft domains are formed, both before and after receptor engagement. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa

    ABCA13 dysfunction associated with psychiatric disorders causes impaired cholesterol trafficking

    Get PDF
    Large transporter protein linked to schizophrenia. 京都大学プレスリリース. 2021-01-07.ABCA13の異常によるコレステロール輸送障害が統合失調症を引き起こすことを解明. 京都大学プレスリリース. 2021-01-08.ATP-binding cassette subfamily A member 13 (ABCA13) is predicted to be the largest ABC protein, consisting of 5, 058 amino acids and a long N-terminal region. Mutations in the ABCA13 gene were reported to increase the susceptibility to schizophrenia, bipolar disorder and major depression. However, little is known about the molecular functions of ABCA13 or how they associate with psychiatric disorders. Here, we examined the biochemical activity of ABCA13 using HEK293 cells transfected with mouse ABCA13. The expression of ABCA13 induced the internalization of cholesterol and gangliosides from the plasma membrane to intracellular vesicles. Cholesterol internalization by ABCA13 required the long N-terminal region and ATP hydrolysis. To examine the physiological roles of ABCA13, we generated Abca13 KO mice using CRISPR/Cas and found that these mice exhibited deficits of prepulse inhibition. Vesicular cholesterol accumulation and synaptic vesicle endocytosis were impaired in primary cultures of Abca13 KO cortical neurons. Furthermore, mutations in ABCA13 gene associated with psychiatric disorders disrupted the protein’s subcellular localization and impaired cholesterol trafficking. These findings suggest that ABCA13 accelerates cholesterol internalization by endocytic retrograde transport in neurons and that loss-of-this function is associated with the pathophysiology of psychiatric disorders

    The NEU1-selective sialidase inhibitor, C9- butyl-amide-DANA, blocks sialidase activity and NEU1-mediated bioactivities in human lung in vitro and murine lung in vivo

    Get PDF
    Neuraminidase-1 (NEU1) is the predominant sialidase expressed in human airway epithelia and lung microvascular endothelia where it mediates multiple biological processes. We tested whether the NEU1-selective sialidase inhibitor, C9-butyl-amide-2-deoxy-2,3-dehydro-Nacetylneuraminic acid (C9-BA-DANA), inhibits one or more established NEU1-mediated bioactivities in human lung cells. We established the IC50 values of C9-BA-DANA for total sialidase activity in human airway epithelia, lung microvascular endothelia and lung fibroblasts to be 3.74 µM, 13.0 µM and 4.82 µM, respectively. In human airway epithelia, C9-BA-DANA dose-dependently inhibited flagellin-induced, NEU1-mediated mucin-1 ectodomain desialylation, adhesiveness for Pseudomonas aeruginosa and shedding. In lung microvascular endothelia, C9-BA-DANA reversed NEU1-driven restraint of cell migration into a wound and disruption of capillary-like tube formation. NEU1 and its chaperone/transport protein, protective protein/cathepsin A (PPCA), were differentially expressed in these same cells. Normalized NEU1 protein expression correlated with total sialidase activity whereas PPCA expression did not. In contrast to eukaryotic sialidases, C9-BA-DANA exerted far less inhibitory activity for three selected bacterial neuraminidases (IC50 \u3e 800 µM). Structural modeling of the four human sialidases and three bacterial neuraminidases revealed a loop between the seventh and eighth strands of the β-propeller fold, that in NEU1, was substantially shorter than that seen in the six other enzymes. Predicted steric hindrance between this loop and C9-BA-DANA could explain its selectivity for NEU1. Finally, pretreatment of mice with C9-BA-DANA completely protected against flagellin-induced increases in lung sialidase activity. Our combined data indicate that C9- BA-DANA inhibits endogenous and ectopically expressed sialidase activity and established NEU1-mediated bioactivities in human airway epithelia, lung microvascular endothelia, and fibroblasts in vitro and murine lungs in vivo

    複雑な構造を有するガングリオシドの化学合成と機能理解の探求

    No full text

    Challenges in the Chemical Complexity and Biological Functionality of Gangliosides

    No full text

    A New Chemical Approach to Human ABO Histo-Blood Group Type 2 Antigens

    No full text
    A new chemical approach to synthesizing human ABO histo-blood type 2 antigenic determinants was developed. N-Phthaloyl-protected lactosaminyl thioglycoside derived from lactulose via the Heyns rearrangement was employed to obtain a type 2 core disaccharide. Use of this scheme lowered the overall number of reaction steps. Stereoselective construction of the α-galactosaminide/galactoside found in A- and B-antigens, respectively, was achieved by using a unique di-tert-butylsilylene-directed α-glycosylation method. The proposed synthetic scheme provides an alternative to existing procedures for preparing ABO blood group antigens
    corecore