217 research outputs found

    Quantum Critical Behavior and Possible Triplet Superconductivity in Electron Doped CoO2 Sheets

    Full text link
    Density functional calculations are used to investigate the doping dependence of the electronic structure and magnetic properties in hexagonal Nax_xCoO2_2. The electronic structure is found to be highly two dimensional, even without accounting for the structural changes associated with hydration. At the local spin density approximation level, a weak itinerant ferromagnetic state is predicted for all doping levels in the range x=0.3x=0.3 to x=0.7x=0.7, with competing but weaker itinerant antiferromagnetic solutions. The Fermi surface, as expected, consists of simple rounded hexagonal cylinders, with additional small pockets depending on the cc lattice parameter. Comparison with experiment implies substantial magnetic quantum fluctuations. Based on the Fermi surface size and the ferromagnetic tendency of this material,it is speculated that a triplet superconducting state analogous to that in Sr2_2RuO4_4 may exist here.Comment: 4 pages, 1 figur

    Universality of conductivity in interacting graphene

    Get PDF
    The Hubbard model on the honeycomb lattice describes charge carriers in graphene with short range interactions. While the interaction modifies several physical quantities, like the value of the Fermi velocity or the wave function renormalization, the a.c. conductivity has a universal value independent of the microscopic details of the model: there are no interaction corrections, provided that the interaction is weak enough and that the system is at half filling. We give a rigorous proof of this fact, based on exact Ward Identities and on constructive Renormalization Group methods

    General boundary conditions for the envelope function in multiband k.p model

    Full text link
    We have derived general boundary conditions (BC) for the multiband envelope functions (which do not contain spurious solutions) in semiconductor heterostructures with abrupt heterointerfaces. These BC require the conservation of the probability flux density normal to the interface and guarantee that the multiband Hamiltonian be self--adjoint. The BC are energy independent and are characteristic properties of the interface. Calculations have been performed of the effect of the general BC on the electron energy levels in a potential well with infinite potential barriers using a coupled two band model. The connection with other approaches to determining BC for the envelope function and to the spurious solution problem in the multiband k.p model are discussed.Comment: 15 pages, 2 figures; to be published in Phys. Rev. B 65, March 15 issue 200

    Electronic States in Two-Dimensional Triangular Cobalt Oxides: Role of Electronic Correlation

    Full text link
    We obtain the electronic states and structures of two-dimensional cobalt oxides, Nax_{x}CoO2_{2} (x=0, 0.35, 0.5 and 0.75) by utilizing the full-potential linear muffin-tin orbitals (FP-LMTO) methods, from which some essential electronic interaction parameters are estimated: the bare on-site Coulomb interaction of cobalt Udd_{dd}=7.5 eV renormalizes to 5 eV for x=0.35, the pdpd hybridizations tpdσ_{pd\sigma} and tpdπ_{pd\pi} are -1.40 and 0.70 eV, respectively. The density of states at EF_{F} decreases from 6-7 states/eV in the local density approximation (LDA) to about 1.0 states/eV in the LDA+U scheme. The role of the intercalation of water molecules and the microscopic mechanism of the superconductivity in Na0.35_{0.35}CoO2_{2}\cdotmH2_{2}O is discussed.Comment: minor errors correcte

    Friedel oscillations in a two-band Hubbard model for CuO chains

    Get PDF
    Friedel oscillations induced by open boundary conditions in a two-band Hubbard model for CuO chains are numerically studied. We find that for physically realistic parameters and close to quarter filling, these oscillations have a 2k_F modulation according with experimental results on YBa_2Cu_3O_{7-delta}. In addition, we predict that, for the same parameters, as hole doping is reduced from quarter filling to half filling, Friedel oscillations would acquire a 4k_F modulation, typical of a strongly correlated electrons regime. The 4k_F modulation dominates also in the electron doped region. The range of parameters varied is very broad, and hence the results reported could apply to other cuprates and other strongly correlated compounds with quasi-one dimensional structures. On a more theoretical side, we stress the fact that the copper and oxygen subsystems should be described by two different Luttinger liquid exponents.Comment: 7 pages, 7 eps figure

    Quantum railroads and directed localization at the juncture of quantum Hall systems

    Full text link
    The integer quantum Hall effect (QHE) and one-dimensional Anderson localization (AL) are limiting special cases of a more general phenomenon, directed localization (DL), predicted to occur in disordered one-dimensional wave guides called "quantum railroads" (QRR). Here we explain the surprising results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of electron transfer between edges of two-dimensional electron systems and identify experimental evidence of QRR's in the general, but until now entirely theoretical, DL regime that unifies the QHE and AL. We propose direct experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.

    Energy Spectrum of Bloch Electrons Under Checkerboard Field Modulations

    Full text link
    Two-dimensional Bloch electrons in a uniform magnetic field exhibit complex energy spectrum. When static electric and magnetic modulations with a checkerboard pattern are superimposed on the uniform magnetic field, more structures and symmetries of the spectra are found, due to the additional adjustable parameters from the modulations. We give a comprehensive report on these new symmetries. We have also found an electric-modulation induced energy gap, whose magnitude is independent of the strength of either the uniform or the modulated magnetic field. This study is applicable to experimentally accessible systems and is related to the investigations on frustrated antiferromagnetism.Comment: 8 pages, 6 figures (reduced in sizes), submitted to Phys. Rev.

    Mass-Enhanced Fermi Liquid Ground State in Na1.5_{1.5}Co2_2O4_4

    Full text link
    Magnetic, transport, and specific heat measurements have been performed on layered metallic oxide Na1.5_{1.5}Co2_2O4_4 as a function of temperature TT. Below a characteristic temperature TT^*=30-40 K, electrical resistivity shows a metallic conductivity with a T2T^2 behavior and magnetic susceptibility deviates from the Curie-Weiss behavior showing a broad peak at \sim14 K. The electronic specific heat coefficient γ\gamma is \sim60 mJ/molK2^2 at 2 K. No evidence for magnetic ordering is found. These behaviors suggest the formation of mass-enhanced Fermi liquid ground state analogous to that in dd-electron heavy fermion compound LiV2_2O4_4.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B 69 (2004

    The random phase property and the Lyapunov Spectrum for disordered multi-channel systems

    Get PDF
    A random phase property establishing in the weak coupling limit a link between quasi-one-dimensional random Schrödinger operators and full random matrix theory is advocated. Briefly summarized it states that the random transfer matrices placed into a normal system of coordinates act on the isotropic frames and lead to a Markov process with a unique invariant measure which is of geometric nature. On the elliptic part of the transfer matrices, this measure is invariant under the unitaries in the hermitian symplectic group of the universality class under study. While the random phase property can up to now only be proved in special models or in a restricted sense, we provide strong numerical evidence that it holds in the Anderson model of localization. A main outcome of the random phase property is a perturbative calculation of the Lyapunov exponents which shows that the Lyapunov spectrum is equidistant and that the localization lengths for large systems in the unitary, orthogonal and symplectic ensemble differ by a factor 2 each. In an Anderson-Ando model on a tubular geometry with magnetic field and spin-orbit coupling, the normal system of coordinates is calculated and this is used to derive explicit energy dependent formulas for the Lyapunov spectrum

    Fully Gapped Single-Particle Excitations in the Lightly Doped Cuprates

    Full text link
    The low-energy excitations of the lightly doped cuprates were studied by angle-resolved photoemission spectroscopy. A finite gap was measured over the entire Brillouin zone, including along the d_{x^2 - y^2} nodal line. This effect was observed to be generic to the normal states of numerous cuprates, including hole-doped La_{2-x}Sr_{x}CuO_{4} and Ca_{2-x}Na_{x}CuO_{2}Cl_{2} and electron-doped Nd_{2-x}Ce_{x}CuO_{4}. In all compounds, the gap appears to close with increasing carrier doping. We consider various scenarios to explain our results, including the possible effects of chemical disorder, electronic inhomogeneity, and a competing phase.Comment: To appear in Phys. Rev.
    corecore