2 research outputs found

    Evaluation of the American yam bean (Pachyrhizus spp.) for storage root yield across varying eco-geographic conditions in Uganda

    Get PDF
    Open Access Article; Published online: 15 June 2019The American yam bean (Pachyrhizus spp.) is a legume crop that is exclusively used for its storage roots. The seeds are inedible due to presence of toxic rotenone. It produces high storage root yields comparable of major root crops like cassava or sweetpotato. And flower pruning more than doubles its root yield performance. Using twenty five yam bean accessions, the current study aimed to determine root yield stability and adaptability, and presence of yam bean production mega environments in Uganda. Trials were planted at three stations, Namulonge, Serere, and Kachwekano during two consecutive seasons of 2011. Fresh storage root yields were significantly different (p < 0.05) across locations with the ideal location being Namulonge (fresh storage root yield of 10.1 t ha-1), followed by Serere (8.0 t ha-1), and Kachwekano (3.1 t ha-1). Results of AMMI analysis indicated the presence of genotype-by-environment interaction for fresh storage root yield. Through AMMI estimates and GGE visual assessment, genotype 209017 was the highest yielding with mean yield of 20.7 t ha-1. Genotype 209018 with mean yield of 15.5 t ha-1 was the most stable and adapted accession in the entire discriminating environment in Uganda. From the environmental focusing plot, the six environments were grouped into two putative mega environments for yam bean production

    Genetic diversity analysis of East African sorghum (Sorghum bicolor [L.] Moench) germplasm collections for agronomic and nutritional quality traits

    No full text
    Breeding for climate-resilient, high-yielding, and nutrient-rich sorghum cultivars is essential for sustainable food systems and enhanced livelihoods in sub-Saharan Africa. Therefore, this study aimed to determine the genetic diversity among East African sorghum germplasm collections through agronomic and nutritional quality traits to select promising lines for direct production or breeding. A collection of 348 sorghum germplasm was field evaluated at two locations in Uganda using an augmented design, and grain iron (Fe) and zinc (Zn) contents were profiled. Data were collected on 20 sorghum agro-morphological traits and Fe and Zn compositions. A significant (P 0.60) and genetic advance as percent of the mean (GA >20%) were computed for grain yield, Zn content, and selected agronomic traits, ensuring genetic gains through selection. A significant positive correlation was recorded between Fe and Zn concentrations (r ¼ 0.32, P < 0.001), allowing simultaneous selection for the two nutrient compositions. Cluster analysis based on phenotypic traits resolved the test sorghum genotypes into four distinct genetic groups. Six genotypes with superior agronomic traits and high Fe and Zn contents were identified for production or potential parents for quality breeding. Overall, the current study found considerable genetic variation among East African sorghum germplasm collections for strategic conservation and breeding in Uganda or similar agro-ecologies
    corecore