101 research outputs found
Extending the phenotypic spectrum of Sengers syndrome: Congenital lactic acidosis with synthetic liver dysfunction.
Sengers syndrome is a rare autosomal recessive mitochondrial disease characterized by lactic acidosis, hypertrophic cardiomyopathy and bilateral cataracts. We present here a case of neonatal demise, within the first day of life, who initially presented with severe lactic acidosis, with evidence of both chorioamnionitis and cardiogenic shock. Initial metabolic labs demonstrated a severe lactic acidosis prompting genetic testing which revealed a homozygous pathogenic variant for Sengers syndrome i
Using nature to nurture: Breast milk analysis and fortification to improve growth and neurodevelopmental outcomes in preterm infants
Premature infants are born prior to a critical window of rapid placental nutrient transfer and fetal growthâparticularly brain developmentâthat occurs during the third trimester of pregnancy. Subsequently, a large proportion of preterm neonates experience extrauterine growth failure and associated neurodevelopmental impairments. Human milk (maternal or donor breast milk) is the recommended source of enteral nutrition for preterm infants, but requires additional fortification of macronutrient, micronutrient, and energy content to meet the nutritional demands of the preterm infant in attempts at replicating in utero nutrient accretion and growth rates. Traditional standardized fortification practices that add a fixed amount of multicomponent fortifier based on assumed breast milk composition do not take into account the considerable variations in breast milk content or individual neonatal metabolism. Emerging methods of individualized fortificationâincluding targeted and adjusted fortificationâshow promise in improving postnatal growth and neurodevelopmental outcomes in preterm infants
Non-Invasive Placental Perfusion Imaging in Pregnancies Complicated by Fetal Heart Disease Using Velocity-Selective Arterial Spin Labeled MRI
The placenta is a vital organ for fetal growth and development during pregnancy. Congenital heart disease (CHD) is a leading cause of morbidity and mortality in newborns. Despite the parallel development of the placenta and fetal heart early in pregnancy, very few studies suggested an association between placental dysfunction and fetal CHD. In this study, we report placental perfusion of healthy pregnancies and pregnancies complicated by fetal CHD measured using advanced fetal MRI techniques. We studied forty-eight pregnant women (31 healthy volunteers and 17 with fetal CHD) that underwent fetal MRI during their second or third trimester of pregnancy. Placental perfusion imaging was performed using velocity-selective arterial spin labeling (VSASL) and 3D image acquisition with whole-placenta coverage. In pregnancies with fetal CHD, global placental perfusion significantly decreased and regional variation of placental perfusion significantly increased with advancing gestational age; however, no such correlation was found in healthy pregnancies. Also, global placental perfusion was significantly higher in fetal CHD versus controls, in the lateral side-lying patient position versus supine, and in the posterior placental position versus anterior placental position. This study reports for the first time non-invasive whole-placenta perfusion imaging in utero. These data suggest that placental VSASL may serve as a potential biomarker of placental dysfunction in fetuses diagnosed with CHD
Non-Invasive Placental Perfusion Imaging in Pregnancies Complicated by Fetal Heart Disease Using Velocity-Selective Arterial Spin Labeled MRI.
The placenta is a vital organ for fetal growth and development during pregnancy. Congenital heart disease (CHD) is a leading cause of morbidity and mortality in newborns. Despite the parallel development of the placenta and fetal heart early in pregnancy, very few studies suggested an association between placental dysfunction and fetal CHD. In this study, we report placental perfusion of healthy pregnancies and pregnancies complicated by fetal CHD measured using advanced fetal MRI techniques. We studied forty-eight pregnant women (31 healthy volunteers and 17 with fetal CHD) that underwent fetal MRI during their second or third trimester of pregnancy. Placental perfusion imaging was performed using velocity-selective arterial spin labeling (VSASL) and 3D image acquisition with whole-placenta coverage. In pregnancies with fetal CHD, global placental perfusion significantly decreased and regional variation of placental perfusion significantly increased with advancing gestational age; however, no such correlation was found in healthy pregnancies. Also, global placental perfusion was significantly higher in fetal CHD versus controls, in the lateral side-lying patient position versus supine, and in the posterior placental position versus anterior placental position. This study reports for the first time non-invasive whole-placenta perfusion imaging in utero. These data suggest that placental VSASL may serve as a potential biomarker of placental dysfunction in fetuses diagnosed with CHD. © 2017 The Author(s)
Cerebral pressure passivity in newborns with encephalopathy undergoing therapeutic hypothermia
We extended our recent modification of the power spectral estimation approach to quantify spectral coherence. We tested both the standard and the modified approaches on simulated data, which showed that the modified approach was highly specific and sensitive to the coupling introduced in the simulation while the standard approach lacked these features. We also applied the modified and standard approaches to quantify the pressure passivity in 4 infants receiving therapeutic hypothermia. This was done by measuring the coupling between continuous cerebral hemoglobin differences and mean arterial blood pressure. Our results showed that the modified approach identified a lower pressure passivity index (PPI, percent time the coherence was above a predefined threshold) than the standard approach (P = 0.0027)
Recommended from our members
An exploration of the potential utility of fetal cardiovascular MRI as an adjunct to fetal echocardiography
Objectives: Fetal cardiovascular magnetic resonance imaging (MRI) offers a potential alternative to echocardiography, although in practice, its use has been limited. We sought to explore the need for additional imaging in a tertiary fetal cardiology unit and the usefulness of standard MRI sequences.
Methods: Cases where the diagnosis was not fully resolved using echocardiography were referred for MRI. Following a threeâplane localiser, fetal movement was assessed with a balanced steadyâstate free precession (bSSFP) cine. Singleâshot fast spin echo and bSSFP sequences were used for diagnostic imaging.
Results: Twentyâtwo fetal cardiac MRIs were performed over 12âmonths, at mean gestation of 32âweeks (26â38âweeks). The majority of referrals were for suspected vascular abnormalities (17/22), particularly involving the aortic arch (nâ=â10) and pulmonary vessels (nâ=â4). Singleâshot fast spin echo sequences produced âblackâbloodâ images, useful for examining the extracardiac vasculature in these cases. BSSFP sequences were more useful for intracardiac structures. Realâtime SSFP allowed for dynamic assessment of structures such as cardiac masses, with enhancement patterns also allowing for tissue characterisation in these cases.
Conclusions: Fetal vascular abnormalities such as coarctation can be difficult to diagnose by using ultrasound. Fetal MRI may have an adjunctive role in the evaluation of the extracardiac vascular anatomy and tissue characterisation. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd
Advanced MR imaging of the placenta: Exploring the in utero placenta-brain connection.
The placenta is a vital organ necessary for the healthy neurodevelopment of the fetus. Despite the known associations between placental dysfunction and neurologic impairment, there is a paucity of tools available to reliably assess in vivo placental health and function. Existing clinical tools for placental assessment remain insensitive in predicting and assessing placental well-being. Advanced MRI techniques hold significant promise for the dynamic, non-invasive, real-time assessment of placental health and identification of early placental-based disorders. In this review, we summarize the available clinical tools for placental assessment including ultrasound, Doppler, and conventional MRI. We then explore the emerging role of advanced placental MR imaging techniques for supporting the developing fetus, appraise the strengths and limitations of quantitative MRI in identifying early markers of placental dysfunction for improved pregnancy monitoring and fetal outcomes
- âŠ