10,104 research outputs found

    Relations between topography, wetlands, vegetation cover and stream water chemistry in boreal headwater catchments in Sweden

    No full text
    International audienceA large part of the spatial variation of stream water chemistry is found in headwater streams and small catchments. To understand the dominant processes, taking place in small and heterogeneous catchments, spatial and temporal data with high resolution is needed. In most cases available map data has too low quality and resolution to successfully be used in environmental assessments and modelling. In this study 18 forested catchments (1?4 km2) were selected within a 120×50 km area in the county of Värmland in western Sweden. The aim was to test if topographic and vegetation variables derived from official datasets were correlated to stream water chemistry, represented by DOC, Al, Fe and Si content. A GIS was used to analyse the elevation characteristics, generate topographic indices and calculate the percentage of wetlands and a number of vegetation classes. The results clearly show that the topography has a major influence on the occurrence of wetlands, which has a major influence on stream water chemistry. There were very strong correlations between mean slope and percentage wetland, percentage wetland and DOC, mean slope and DOC and mean topographic wetness index and DOC. The conclusion was that official topographic data, despite uncertain or low quality and resolution, could be useful in the prediction of headwater chemistry in boreal forested catchments

    A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars

    Full text link
    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ−ω\sigma - \omega mean field model for the nucleons and their interactions. In this context there are two notions of ``relativistic'': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly-rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR

    Relativistic Two-stream Instability

    Full text link
    We study the (local) propagation of plane waves in a relativistic, non-dissipative, two-fluid system, allowing for a relative velocity in the "background" configuration. The main aim is to analyze relativistic two-stream instability. This instability requires a relative flow -- either across an interface or when two or more fluids interpenetrate -- and can be triggered, for example, when one-dimensional plane-waves appear to be left-moving with respect to one fluid, but right-moving with respect to another. The dispersion relation of the two-fluid system is studied for different two-fluid equations of state: (i) the "free" (where there is no direct coupling between the fluid densities), (ii) coupled, and (iii) entrained (where the fluid momenta are linear combinations of the velocities) cases are considered in a frame-independent fashion (eg. no restriction to the rest-frame of either fluid). As a by-product of our analysis we determine the necessary conditions for a two-fluid system to be causal and absolutely stable and establish a new constraint on the entrainment.Comment: 15 pages, 2 eps-figure

    Gravitational-wave astronomy: the high-frequency window

    Full text link
    This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated ``bread-and-butter'' source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.Comment: 21 pages, 5 figures, Lectures presented at the 2nd Aegean Summer School on the Early Universe, Syros, Greece, September 200

    Dynamical simulation of spin-glass and chiral-glass orderings in three-dimensional Heisenberg spin glasses

    Full text link
    Spin-glass and chiral-glass orderings in three-dimensional Heisenberg spin glasses are studied with and without randaom magnetic anisotropy by dynamical Monte Carlo simulations. In isotropic case, clear evidence of a finite-temperature chiral-glass transition is presented. While the spin autocorrelation exhibits only an interrupted aging, the chirality autocorrelation persists to exhibit a pronounced aging effect reminisecnt of the one observed in the mean-field model. In anisotropic case, asymptotic mixing of the spin and the chirality is observed in the off-equilibrium dynamics.Comment: 4 pages including 5 figures, LaTex, to appear in Phys. Rev. Let

    Models for the magnetic ac susceptibility of granular superferromagnetic CoFe/Al2_2O3_3

    Full text link
    The magnetization and magnetic ac susceptibility, χ=χ′−iχ′′\chi = \chi' - i \chi'', of superferromagnetic systems are studied by numerical simulations. The Cole-Cole plot, χ′′\chi'' vs. χ′\chi', is used as a tool for classifying magnetic systems by their dynamical behavior. The simulations of the magnetization hysteresis and the ac susceptibility are performed with two approaches for a driven domain wall in random media. The studies are motivated by recent experimental results on the interacting nanoparticle system Co80_{80}Fe20_{20}/Al2_{2}O3_{3} showing superferromagnetic behavior. Its Cole-Cole plot indicates domain wall motion dynamics similarly to a disordered ferromagnet, including pinning and sliding motion. With our models we can successfully reproduce the features found in the experimental Cole-Cole plots.Comment: 8 pages, 6 figure

    Nonexistence of Generalized Apparent Horizons in Minkowski Space

    Full text link
    We establish a Positive Mass Theorem for initial data sets of the Einstein equations having generalized trapped surface boundary. In particular we answer a question posed by R. Wald concerning the existence of generalized apparent horizons in Minkowski space
    • …
    corecore