23,015 research outputs found

    The time evolution of marginally trapped surfaces

    Full text link
    In previous work we have shown the existence of a dynamical horizon or marginally trapped tube (MOTT) containing a given strictly stable marginally outer trapped surface (MOTS). In this paper we show some results on the global behavior of MOTTs assuming the null energy condition. In particular we show that MOTSs persist in the sense that every Cauchy surface in the future of a given Cauchy surface containing a MOTS also must contain a MOTS. We describe a situation where the evolving outermost MOTS must jump during the coalescence of two seperate MOTSs. We furthermore characterize the behavior of MOTSs in the case that the principal eigenvalue vanishes under a genericity assumption. This leads to a regularity result for the tube of outermost MOTSs under the genericity assumption. This tube is then smooth up to finitely many jump times. Finally we discuss the relation of MOTSs to singularities of a space-time.Comment: 21 pages. This revision corrects some typos and contains more detailed proofs than the original versio

    Bouncing Palatini cosmologies and their perturbations

    Full text link
    Nonsingular cosmologies are investigated in the framework of f(R) gravity within the first order formalism. General conditions for bounces in isotropic and homogeneous cosmology are presented. It is shown that only a quadratic curvature correction is needed to predict a bounce in a flat or to describe cyclic evolution in a curved dust-filled universe. Formalism for perturbations in these models is set up. In the simplest cases, the perturbations diverge at the turnover. Conditions to obtain smooth evolution are derived.Comment: 7 pages, 1 figure. v2: added references

    The Cosmological Time Function

    Get PDF
    Let (M,g)(M,g) be a time oriented Lorentzian manifold and dd the Lorentzian distance on MM. The function τ(q):=supp<qd(p,q)\tau(q):=\sup_{p< q} d(p,q) is the cosmological time function of MM, where as usual p<qp< q means that pp is in the causal past of qq. This function is called regular iff τ(q)<\tau(q) < \infty for all qq and also τ0\tau \to 0 along every past inextendible causal curve. If the cosmological time function τ\tau of a space time (M,g)(M,g) is regular it has several pleasant consequences: (1) It forces (M,g)(M,g) to be globally hyperbolic, (2) every point of (M,g)(M,g) can be connected to the initial singularity by a rest curve (i.e., a timelike geodesic ray that maximizes the distance to the singularity), (3) the function τ\tau is a time function in the usual sense, in particular (4) τ\tau is continuous, in fact locally Lipschitz and the second derivatives of τ\tau exist almost everywhere.Comment: 19 pages, AEI preprint, latex2e with amsmath and amsth

    A Strong Maximum Principle for Weak Solutions of Quasi-Linear Elliptic Equations with Applications to Lorentzian and Riemannian Geometry

    Full text link
    The strong maximum principle is proved to hold for weak (in the sense of support functions) sub- and super-solutions to a class of quasi-linear elliptic equations that includes the mean curvature equation for C0C^0 spacelike hypersurfaces in a Lorentzian manifold. As one application a Lorentzian warped product splitting theorem is given.Comment: 37 pages, 1 figure, ams-latex using eepi

    The Merger of Small and Large Black Holes

    Get PDF
    We present simulations of binary black holes mergers in which, after the common outer horizon has formed, the marginally outer trapped surfaces (MOTSs) corresponding to the individual black holes continue to approach and eventually penetrate each other. This has very interesting consequences according to recent results in the theory of MOTSs. Uniqueness and stability theorems imply that two MOTSs which touch with a common outer normal must be identical. This suggests a possible dramatic consequence of the collision between a small and large black hole. If the penetration were to continue to completion then the two MOTSs would have to coalesce, by some combination of the small one growing and the big one shrinking. Here we explore the relationship between theory and numerical simulations, in which a small black hole has halfway penetrated a large one.Comment: 17 pages, 11 figure

    Stability of the r-modes in white dwarf stars

    Get PDF
    Stability of the r-modes in rapidly rotating white dwarf stars is investigated. Improved estimates of the growth times of the gravitational-radiation driven instability in the r-modes of the observed DQ Her objects are found to be longer (probably considerably longer) than 6x10^9y. This rules out the possibility that the r-modes in these objects are emitting gravitational radiation at levels that could be detectable by LISA. More generally it is shown that the r-mode instability can only be excited in a very small subset of very hot (T>10^6K), rather massive (M>0.9M_sun) and very rapidly rotating (P_min<P<1.2P_min) white dwarf stars. Further, the growth times of this instability are so long that these conditions must persist for a very long time (t>10^9y) to allow the amplitude to grow to a dynamically significant level. This makes it extremely unlikely that the r-mode instability plays a significant role in any real white dwarf stars.Comment: 5 Pages, 5 Figures, revte

    Asymptotically Hyperbolic Non Constant Mean Curvature Solutions of the Einstein Constraint Equations

    Get PDF
    We describe how the iterative technique used by Isenberg and Moncrief to verify the existence of large sets of non constant mean curvature solutions of the Einstein constraints on closed manifolds can be adapted to verify the existence of large sets of asymptotically hyperbolic non constant mean curvature solutions of the Einstein constraints.Comment: 19 pages, TeX, no figure

    Bounds on area and charge for marginally trapped surfaces with cosmological constant

    Full text link
    We sharpen the known inequalities AΛ4π(1g)A \Lambda \le 4\pi (1-g) and A4πQ2A\ge 4\pi Q^2 between the area AA and the electric charge QQ of a stable marginally outer trapped surface (MOTS) of genus g in the presence of a cosmological constant Λ\Lambda. In particular, instead of requiring stability we include the principal eigenvalue λ\lambda of the stability operator. For Λ=Λ+λ>0\Lambda^{*} = \Lambda + \lambda > 0 we obtain a lower and an upper bound for ΛA \Lambda^{*} A in terms of ΛQ2 \Lambda^{*} Q^2 as well as the upper bound Q1/(2Λ) Q \le 1/(2\sqrt{\Lambda^{*}}) for the charge, which reduces to Q1/(2Λ) Q \le 1/(2\sqrt{\Lambda}) in the stable case λ0\lambda \ge 0. For Λ<0\Lambda^{*} < 0 there remains only a lower bound on AA. In the spherically symmetric, static, stable case one of the area inequalities is saturated iff the surface gravity vanishes. We also discuss implications of our inequalities for "jumps" and mergers of charged MOTS.Comment: minor corrections to previous version and to published versio

    Second-order rotational effects on the r-modes of neutron stars

    Get PDF
    Techniques are developed here for evaluating the r-modes of rotating neutron stars through second order in the angular velocity of the star. Second-order corrections to the frequencies and eigenfunctions for these modes are evaluated for neutron star models. The second-order eigenfunctions for these modes are determined here by solving an unusual inhomogeneous hyperbolic boundary-value problem. The numerical techniques developed to solve this unusual problem are somewhat non-standard and may well be of interest beyond the particular application here. The bulk-viscosity coupling to the r-modes, which appears first at second order, is evaluated. The bulk-viscosity timescales are found here to be longer than previous estimates for normal neutron stars, but shorter than previous estimates for strange stars. These new timescales do not substantially affect the current picture of the gravitational radiation driven instability of the r-modes either for neutron stars or for strange stars.Comment: 13 pages, 5 figures, revte

    A numerical study of the r-mode instability of rapidly rotating nascent neutron stars

    Full text link
    The first results of numerical analysis of classical r-modes of {\it rapidly} rotating compressible stellar models are reported. The full set of linear perturbation equations of rotating stars in Newtonian gravity are numerically solved without the slow rotation approximation. A critical curve of gravitational wave emission induced instability which restricts the rotational frequencies of hot young neutron stars is obtained. Taking the standard cooling mechanisms of neutron stars into account, we also show the `evolutionary curves' along which neutron stars are supposed to evolve as cooling and spinning-down proceed. Rotational frequencies of 1.4M1.4M_{\odot} stars suffering from this instability decrease to around 100Hz when the standard cooling mechanism of neutron stars is employed. This result confirms the results of other authors who adopted the slow rotation approximation.Comment: 4 pages, 2 figures; MNRAS,316,L1(2000
    corecore