23,015 research outputs found
The time evolution of marginally trapped surfaces
In previous work we have shown the existence of a dynamical horizon or
marginally trapped tube (MOTT) containing a given strictly stable marginally
outer trapped surface (MOTS). In this paper we show some results on the global
behavior of MOTTs assuming the null energy condition. In particular we show
that MOTSs persist in the sense that every Cauchy surface in the future of a
given Cauchy surface containing a MOTS also must contain a MOTS. We describe a
situation where the evolving outermost MOTS must jump during the coalescence of
two seperate MOTSs. We furthermore characterize the behavior of MOTSs in the
case that the principal eigenvalue vanishes under a genericity assumption. This
leads to a regularity result for the tube of outermost MOTSs under the
genericity assumption. This tube is then smooth up to finitely many jump times.
Finally we discuss the relation of MOTSs to singularities of a space-time.Comment: 21 pages. This revision corrects some typos and contains more
detailed proofs than the original versio
Bouncing Palatini cosmologies and their perturbations
Nonsingular cosmologies are investigated in the framework of f(R) gravity
within the first order formalism. General conditions for bounces in isotropic
and homogeneous cosmology are presented. It is shown that only a quadratic
curvature correction is needed to predict a bounce in a flat or to describe
cyclic evolution in a curved dust-filled universe. Formalism for perturbations
in these models is set up. In the simplest cases, the perturbations diverge at
the turnover. Conditions to obtain smooth evolution are derived.Comment: 7 pages, 1 figure. v2: added references
The Cosmological Time Function
Let be a time oriented Lorentzian manifold and the Lorentzian
distance on . The function is the cosmological
time function of , where as usual means that is in the causal
past of . This function is called regular iff for all
and also along every past inextendible causal curve. If the
cosmological time function of a space time is regular it has
several pleasant consequences: (1) It forces to be globally hyperbolic,
(2) every point of can be connected to the initial singularity by a
rest curve (i.e., a timelike geodesic ray that maximizes the distance to the
singularity), (3) the function is a time function in the usual sense, in
particular (4) is continuous, in fact locally Lipschitz and the second
derivatives of exist almost everywhere.Comment: 19 pages, AEI preprint, latex2e with amsmath and amsth
A Strong Maximum Principle for Weak Solutions of Quasi-Linear Elliptic Equations with Applications to Lorentzian and Riemannian Geometry
The strong maximum principle is proved to hold for weak (in the sense of
support functions) sub- and super-solutions to a class of quasi-linear elliptic
equations that includes the mean curvature equation for spacelike
hypersurfaces in a Lorentzian manifold. As one application a Lorentzian warped
product splitting theorem is given.Comment: 37 pages, 1 figure, ams-latex using eepi
The Merger of Small and Large Black Holes
We present simulations of binary black holes mergers in which, after the
common outer horizon has formed, the marginally outer trapped surfaces (MOTSs)
corresponding to the individual black holes continue to approach and eventually
penetrate each other. This has very interesting consequences according to
recent results in the theory of MOTSs. Uniqueness and stability theorems imply
that two MOTSs which touch with a common outer normal must be identical. This
suggests a possible dramatic consequence of the collision between a small and
large black hole. If the penetration were to continue to completion then the
two MOTSs would have to coalesce, by some combination of the small one growing
and the big one shrinking. Here we explore the relationship between theory and
numerical simulations, in which a small black hole has halfway penetrated a
large one.Comment: 17 pages, 11 figure
Stability of the r-modes in white dwarf stars
Stability of the r-modes in rapidly rotating white dwarf stars is
investigated. Improved estimates of the growth times of the
gravitational-radiation driven instability in the r-modes of the observed DQ
Her objects are found to be longer (probably considerably longer) than 6x10^9y.
This rules out the possibility that the r-modes in these objects are emitting
gravitational radiation at levels that could be detectable by LISA. More
generally it is shown that the r-mode instability can only be excited in a very
small subset of very hot (T>10^6K), rather massive (M>0.9M_sun) and very
rapidly rotating (P_min<P<1.2P_min) white dwarf stars. Further, the growth
times of this instability are so long that these conditions must persist for a
very long time (t>10^9y) to allow the amplitude to grow to a dynamically
significant level. This makes it extremely unlikely that the r-mode instability
plays a significant role in any real white dwarf stars.Comment: 5 Pages, 5 Figures, revte
Asymptotically Hyperbolic Non Constant Mean Curvature Solutions of the Einstein Constraint Equations
We describe how the iterative technique used by Isenberg and Moncrief to
verify the existence of large sets of non constant mean curvature solutions of
the Einstein constraints on closed manifolds can be adapted to verify the
existence of large sets of asymptotically hyperbolic non constant mean
curvature solutions of the Einstein constraints.Comment: 19 pages, TeX, no figure
Bounds on area and charge for marginally trapped surfaces with cosmological constant
We sharpen the known inequalities and between the area and the electric charge of a stable marginally
outer trapped surface (MOTS) of genus g in the presence of a cosmological
constant . In particular, instead of requiring stability we include
the principal eigenvalue of the stability operator. For we obtain a lower and an upper bound for in terms of as well as the upper bound for the charge, which reduces to in the stable case . For
there remains only a lower bound on . In the spherically symmetric, static,
stable case one of the area inequalities is saturated iff the surface gravity
vanishes. We also discuss implications of our inequalities for "jumps" and
mergers of charged MOTS.Comment: minor corrections to previous version and to published versio
Second-order rotational effects on the r-modes of neutron stars
Techniques are developed here for evaluating the r-modes of rotating neutron
stars through second order in the angular velocity of the star. Second-order
corrections to the frequencies and eigenfunctions for these modes are evaluated
for neutron star models. The second-order eigenfunctions for these modes are
determined here by solving an unusual inhomogeneous hyperbolic boundary-value
problem. The numerical techniques developed to solve this unusual problem are
somewhat non-standard and may well be of interest beyond the particular
application here. The bulk-viscosity coupling to the r-modes, which appears
first at second order, is evaluated. The bulk-viscosity timescales are found
here to be longer than previous estimates for normal neutron stars, but shorter
than previous estimates for strange stars. These new timescales do not
substantially affect the current picture of the gravitational radiation driven
instability of the r-modes either for neutron stars or for strange stars.Comment: 13 pages, 5 figures, revte
A numerical study of the r-mode instability of rapidly rotating nascent neutron stars
The first results of numerical analysis of classical r-modes of {\it rapidly}
rotating compressible stellar models are reported. The full set of linear
perturbation equations of rotating stars in Newtonian gravity are numerically
solved without the slow rotation approximation. A critical curve of
gravitational wave emission induced instability which restricts the rotational
frequencies of hot young neutron stars is obtained. Taking the standard cooling
mechanisms of neutron stars into account, we also show the `evolutionary
curves' along which neutron stars are supposed to evolve as cooling and
spinning-down proceed. Rotational frequencies of stars suffering
from this instability decrease to around 100Hz when the standard cooling
mechanism of neutron stars is employed. This result confirms the results of
other authors who adopted the slow rotation approximation.Comment: 4 pages, 2 figures; MNRAS,316,L1(2000
- …