12,274 research outputs found

    The nonlinear development of the relativistic two-stream instability

    Full text link
    The two-stream instability has been mooted as an explanation for a range of astrophysical applications from GRBs and pulsar glitches to cosmology. Using the first nonlinear numerical simulations of relativistic multi-species hydrodynamics we show that the onset and initial growth of the instability is very well described by linear perturbation theory. In the later stages the linear and nonlinear description match only qualitatively, and the instability does not saturate even in the nonlinear case by purely ideal hydrodynamic effects.Comment: 15 pages, 9 figure

    The dynamics of dissipative multi-fluid neutron star cores

    Full text link
    We present a Newtonian multi-fluid formalism for superfluid neutron star cores, focussing on the additional dissipative terms that arise when one takes into account the individual dynamical degrees of freedom associated with the coupled "fluids". The problem is of direct astrophysical interest as the nature of the dissipative terms can have significant impact on the damping of the various oscillation modes of the star and the associated gravitational-wave signatures. A particularly interesting application concerns the gravitational-wave driven instability of f- and r-modes. We apply the developed formalism to two specific three-fluid systems: (i) a hyperon core in which both Lambda and Sigma^- hyperons are present, and (ii) a core of deconfined quarks in the colour-flavour-locked phase in which a population of neutral K^0 kaons is present. The formalism is, however, general and can be applied to other problems in neutron-star dynamics (such as the effect of thermal excitations close to the superfluid transition temperature) as well as laboratory multi-fluid systems.Comment: RevTex, no figure

    Shock propagation and stability in causal dissipative hydrodynamics

    Full text link
    We studied the shock propagation and its stability with the causal dissipative hydrodynamics in 1+1 dimensional systems. We show that the presence of the usual viscosity is not enough to stabilize the solution. This problem is solved by introducing an additional viscosity which is related to the coarse-graining scale of the theory.Comment: 14 pages, 16 figure

    Adiabatic radio frequency potentials for the coherent manipulation of matter waves

    Full text link
    Adiabatic dressed state potentials are created when magnetic sub-states of trapped atoms are coupled by a radio frequency field. We discuss their theoretical foundations and point out fundamental advantages over potentials purely based on static fields. The enhanced flexibility enables one to implement numerous novel configurations, including double wells, Mach-Zehnder and Sagnac interferometers which even allows for internal state-dependent atom manipulation. These can be realized using simple and highly integrated wire geometries on atom chips.Comment: 13 pages, 2 figure

    Stability of the r-modes in white dwarf stars

    Get PDF
    Stability of the r-modes in rapidly rotating white dwarf stars is investigated. Improved estimates of the growth times of the gravitational-radiation driven instability in the r-modes of the observed DQ Her objects are found to be longer (probably considerably longer) than 6x10^9y. This rules out the possibility that the r-modes in these objects are emitting gravitational radiation at levels that could be detectable by LISA. More generally it is shown that the r-mode instability can only be excited in a very small subset of very hot (T>10^6K), rather massive (M>0.9M_sun) and very rapidly rotating (P_min<P<1.2P_min) white dwarf stars. Further, the growth times of this instability are so long that these conditions must persist for a very long time (t>10^9y) to allow the amplitude to grow to a dynamically significant level. This makes it extremely unlikely that the r-mode instability plays a significant role in any real white dwarf stars.Comment: 5 Pages, 5 Figures, revte

    Thermoelectrical manipulation of nanomagnets

    Get PDF
    We investigate the interplay between the thermodynamic properties and spin-dependent transport in a mesoscopic device based on a magnetic multilayer (F/f/F), in which two strongly ferromagnetic layers (F) are exchange-coupled through a weakly ferromagnetic spacer (f) with the Curie temperature in the vicinity of room temperature. We show theoretically that the Joule heating produced by the spin-dependent current allows a spin-thermo-electronic control of the ferromagnetic-to-paramagnetic (f/N) transition in the spacer and, thereby, of the relative orientation of the outer F-layers in the device (spin-thermo-electric manipulation of nanomagnets). Supporting experimental evidence of such thermally controlled switching from parallel to antiparallel magnetization orientations in F/f(N)/F sandwiches is presented. Furthermore, we show theoretically that local Joule heating due to a high concentration of current in a magnetic point contact or a nanopillar can be used to reversibly drive the weakly ferromagnetic spacer through its Curie point and thereby exchange couple and decouple the two strongly ferromagnetic F-layers. For the devices designed to have an antiparallel ground state above the Curie point of the spacer, the associated spin-thermionic parallel-to-antiparallel switching causes magneto-resistance oscillations whose frequency can be controlled by proper biasing from essentially DC to GHz. We discuss in detail an experimental realization of a device that can operate as a thermo-magneto-resistive switch or oscillator.Comment: This paper, published in J. Appl. Phys. 107, 123706 (2010), is an expanded version of arXiv:0710.5477 (8 pages, 12 figures, two additional authors and experimental section added

    Decomposing the Sources of Earnings Inequality Assessing the Role of Reallocation

    Get PDF
    This paper uses matched employer-employee data from the Longitudinal Employer Household Dynamics database to investigate the contribution of worker and firm reallocation to within industry changes in wage inequality between 1992 and 2003. We find that the entry and exit of firms and the sorting of workers and firms based on underlying worker "skills" are important determinants of changes in industry earnings distributions over time. Our results suggest that the underlying dynamics of earnings inequality are complex and are due to factors that cannot be measured in standard crosssectional data.
    corecore