14,373 research outputs found
Asymptotically Hyperbolic Non Constant Mean Curvature Solutions of the Einstein Constraint Equations
We describe how the iterative technique used by Isenberg and Moncrief to
verify the existence of large sets of non constant mean curvature solutions of
the Einstein constraints on closed manifolds can be adapted to verify the
existence of large sets of asymptotically hyperbolic non constant mean
curvature solutions of the Einstein constraints.Comment: 19 pages, TeX, no figure
A microfluidic device for the study of the orientational dynamics of microrods
We describe a microfluidic device for studying the orientational dynamics of
microrods. The device enables us to experimentally investigate the tumbling of
microrods immersed in the shear flow in a microfluidic channel with a depth of
400 mu and a width of 2.5 mm. The orientational dynamics was recorded using a
20 X microscopic objective and a CCD camera. The microrods were produced by
shearing microdroplets of photocurable epoxy resin. We show different examples
of empirically observed tumbling. On the one hand we find that short stretches
of the experimentally determined time series are well described by fits to
solutions of Jeffery's approximate equation of motion [Jeffery, Proc. R. Soc.
London. 102 (1922), 161-179]. On the other hand we find that the empirically
observed trajectories drift between different solutions of Jeffery's equation.
We discuss possible causes of this orbit drift.Comment: 11 pages, 8 figure
Line Emission from Gas in Optically Thick Dust Disks around Young Stars
We present self-consistent models of gas in optically-thick dusty disks and
calculate its thermal, density and chemical structure. The models focus on an
accurate treatment of the upper layers where line emission originates, and at
radii AU. We present results of disks around stars where we have varied dust properties, X-ray luminosities and
UV luminosities. We separately treat gas and dust thermal balance, and
calculate line luminosities at infrared and sub-millimeter wavelengths from all
transitions originating in the predominantly neutral gas that lies below the
ionized surface of the disk. We find that the [ArII] 7m, [NeII]
12.8m, [FeI] 24m, [SI] 25m, [FeII] 26m, [SiII] 35 m,
[OI] 63m and pure rotational lines of H, HO and CO can be quite
strong and are good indicators of the presence and distribution of gas in
disks. We apply our models to the disk around the nearby young star, TW Hya,
and find good agreement between our model calculations and observations. We
also predict strong emission lines from the TW Hya disk that are likely to be
detected by future facilities. A comparison of CO observations with our models
suggests that the gas disk around TW Hya may be truncated to AU,
compared to its dust disk of 174 AU. We speculate that photoevaporation due to
the strong stellar FUV field from TW Hya is responsible for the gas disk
truncation.Comment: Accepted to Astrophysical Journa
A numerical study of the r-mode instability of rapidly rotating nascent neutron stars
The first results of numerical analysis of classical r-modes of {\it rapidly}
rotating compressible stellar models are reported. The full set of linear
perturbation equations of rotating stars in Newtonian gravity are numerically
solved without the slow rotation approximation. A critical curve of
gravitational wave emission induced instability which restricts the rotational
frequencies of hot young neutron stars is obtained. Taking the standard cooling
mechanisms of neutron stars into account, we also show the `evolutionary
curves' along which neutron stars are supposed to evolve as cooling and
spinning-down proceed. Rotational frequencies of stars suffering
from this instability decrease to around 100Hz when the standard cooling
mechanism of neutron stars is employed. This result confirms the results of
other authors who adopted the slow rotation approximation.Comment: 4 pages, 2 figures; MNRAS,316,L1(2000
Stability of the r-modes in white dwarf stars
Stability of the r-modes in rapidly rotating white dwarf stars is
investigated. Improved estimates of the growth times of the
gravitational-radiation driven instability in the r-modes of the observed DQ
Her objects are found to be longer (probably considerably longer) than 6x10^9y.
This rules out the possibility that the r-modes in these objects are emitting
gravitational radiation at levels that could be detectable by LISA. More
generally it is shown that the r-mode instability can only be excited in a very
small subset of very hot (T>10^6K), rather massive (M>0.9M_sun) and very
rapidly rotating (P_min<P<1.2P_min) white dwarf stars. Further, the growth
times of this instability are so long that these conditions must persist for a
very long time (t>10^9y) to allow the amplitude to grow to a dynamically
significant level. This makes it extremely unlikely that the r-mode instability
plays a significant role in any real white dwarf stars.Comment: 5 Pages, 5 Figures, revte
Prediction of Non-Sentinel Lymph Node Status in Breast Cancer Patients with Sentinel Lymph Node Metastases: Evaluation of the Tenon Score
Full open access to this and thousands of other papers a
Asymptotic gluing of asymptotically hyperbolic solutions to the Einstein constraint equations
We show that asymptotically hyperbolic solutions of the Einstein constraint
equations with constant mean curvature can be glued in such a way that their
asymptotic regions are connected.Comment: 37 pages; 2 figure
Second-order rotational effects on the r-modes of neutron stars
Techniques are developed here for evaluating the r-modes of rotating neutron
stars through second order in the angular velocity of the star. Second-order
corrections to the frequencies and eigenfunctions for these modes are evaluated
for neutron star models. The second-order eigenfunctions for these modes are
determined here by solving an unusual inhomogeneous hyperbolic boundary-value
problem. The numerical techniques developed to solve this unusual problem are
somewhat non-standard and may well be of interest beyond the particular
application here. The bulk-viscosity coupling to the r-modes, which appears
first at second order, is evaluated. The bulk-viscosity timescales are found
here to be longer than previous estimates for normal neutron stars, but shorter
than previous estimates for strange stars. These new timescales do not
substantially affect the current picture of the gravitational radiation driven
instability of the r-modes either for neutron stars or for strange stars.Comment: 13 pages, 5 figures, revte
Rossby-Haurwitz waves of a slowly and differentially rotating fluid shell
Recent studies have raised doubts about the occurrence of r modes in
Newtonian stars with a large degree of differential rotation. To assess the
validity of this conjecture we have solved the eigenvalue problem for
Rossby-Haurwitz waves (the analogues of r waves on a thin-shell) in the
presence of differential rotation. The results obtained indicate that the
eigenvalue problem is never singular and that, at least for the case of a
thin-shell, the analogues of r modes can be found for arbitrarily large degrees
of differential rotation. This work clarifies the puzzling results obtained in
calculations of differentially rotating axi-symmetric Newtonian stars.Comment: 8pages, 3figures. Submitted to CQ
Dispersion interactions from a local polarizability model
A local approximation for dynamic polarizability leads to a nonlocal
functional for the long-range dispersion interaction energy via an
imaginary-frequency integral. We analyze several local polarizability
approximations and argue that the form underlying the construction of our
recent van der Waals functional [O. A. Vydrov and T. Van Voorhis, Phys. Rev.
Lett. 103, 063004 (2009)] is particularly well physically justified. Using this
improved formula, we compute dynamic dipole polarizabilities and van der Waals
C_6 coefficients for a set of atoms and molecules. Good agreement with the
benchmark values is obtained in most cases
- …