23,700 research outputs found

    The Feynman-Wilson gas and the Lund model

    Get PDF
    We derive a partition function for the Lund fragmentation model and compare it with that of a classical gas. For a fixed rapidity ``volume'' this partition function corresponds to a multiplicity distribution which is very close to a binomial distribution. We compare our results with the multiplicity distributions obtained from the JETSET Monte Carlo for several scenarios. Firstly, for the fragmentation vertices of the Lund string. Secondly, for the final state particles both with and without decays.Comment: Latex, 21+1 pages, 11 figure

    On marginally outer trapped surfaces in stationary and static spacetimes

    Full text link
    In this paper we prove that for any spacelike hypersurface containing an untrapped barrier in a stationary spacetime satisfying the null energy condition, any marginally outer trapped surface cannot lie in the exterior region where the stationary Killing vector is timelike. In the static case we prove that any marginally outer trapped surface cannot penetrate into the exterior region where the static Killing vector is timelike. In fact, we prove these result at an initial data level, without even assuming existence of a spacetime. The proof relies on a powerful theorem by Andersson and Metzger on existence of an outermost marginally outer trapped surface.Comment: 22 pages, 3 figures; 1 reference added, 1 figure changed, other minor change

    Time-resolved extinction rates of stochastic populations

    Full text link
    Extinction of a long-lived isolated stochastic population can be described as an exponentially slow decay of quasi-stationary probability distribution of the population size. We address extinction of a population in a two-population system in the case when the population turnover -- renewal and removal -- is much slower than all other processes. In this case there is a time scale separation in the system which enables one to introduce a short-time quasi-stationary extinction rate W_1 and a long-time quasi-stationary extinction rate W_2, and develop a time-dependent theory of the transition between the two rates. It is shown that W_1 and W_2 coincide with the extinction rates when the population turnover is absent, and present but very slow, respectively. The exponentially large disparity between the two rates reflects fragility of the extinction rate in the population dynamics without turnover.Comment: 8 pages, 4 figure

    Entanglement of distant optomechanical systems

    Get PDF
    We theoretically investigate the possibility to generate non-classical states of optical and mechanical modes of optical cavities, distant from each other. A setup comprised of two identical cavities, each with one fixed and one movable mirror and coupled by an optical fiber, is studied in detail. We show that with such a setup there is potential to generate entanglement between the distant cavities, involving both optical and mechanical modes. The scheme is robust with respect to dissipation, and nonlocal correlations are found to exist in the steady state at finite temperatures.Comment: 12 pages (published with minor modifications

    Shock propagation and stability in causal dissipative hydrodynamics

    Full text link
    We studied the shock propagation and its stability with the causal dissipative hydrodynamics in 1+1 dimensional systems. We show that the presence of the usual viscosity is not enough to stabilize the solution. This problem is solved by introducing an additional viscosity which is related to the coarse-graining scale of the theory.Comment: 14 pages, 16 figure

    Memory Effect, Rejuvenation and Chaos Effect in the Multi-layer Random Energy Model

    Full text link
    We introduce magnetization to the Multi-layer Random Energy Model which has a hierarchical structure, and perform Monte Carlo simulation to observe the behavior of ac-susceptibility. We find that this model is able to reproduce three prominent features of spin glasses, i.e., memory effect, rejuvenation and chaos effect, which were found recently by various experiments on aging phenomena with temperature variations.Comment: 10 pages, 14 figures, to be submitted to J. Phys. Soc. Jp

    Adiabatic radio frequency potentials for the coherent manipulation of matter waves

    Full text link
    Adiabatic dressed state potentials are created when magnetic sub-states of trapped atoms are coupled by a radio frequency field. We discuss their theoretical foundations and point out fundamental advantages over potentials purely based on static fields. The enhanced flexibility enables one to implement numerous novel configurations, including double wells, Mach-Zehnder and Sagnac interferometers which even allows for internal state-dependent atom manipulation. These can be realized using simple and highly integrated wire geometries on atom chips.Comment: 13 pages, 2 figure

    Residue currents associated with weakly holomorphic functions

    Get PDF
    We construct Coleff-Herrera products and Bochner-Martinelli type residue currents associated with a tuple ff of weakly holomorphic functions, and show that these currents satisfy basic properties from the (strongly) holomorphic case, as the transformation law, the Poincar\'e-Lelong formula and the equivalence of the Coleff-Herrera product and the Bochner-Martinelli type residue current associated with ff when ff defines a complete intersection.Comment: 28 pages. Updated with some corrections from the revision process. In particular, corrected and clarified some things in Section 5 and 6 regarding products of weakly holomorphic functions and currents, and the definition of the Bochner-Martinelli type current
    • 

    corecore