23,735 research outputs found

    The Cosmological Time Function

    Get PDF
    Let (M,g)(M,g) be a time oriented Lorentzian manifold and dd the Lorentzian distance on MM. The function τ(q):=supp<qd(p,q)\tau(q):=\sup_{p< q} d(p,q) is the cosmological time function of MM, where as usual p<qp< q means that pp is in the causal past of qq. This function is called regular iff τ(q)<\tau(q) < \infty for all qq and also τ0\tau \to 0 along every past inextendible causal curve. If the cosmological time function τ\tau of a space time (M,g)(M,g) is regular it has several pleasant consequences: (1) It forces (M,g)(M,g) to be globally hyperbolic, (2) every point of (M,g)(M,g) can be connected to the initial singularity by a rest curve (i.e., a timelike geodesic ray that maximizes the distance to the singularity), (3) the function τ\tau is a time function in the usual sense, in particular (4) τ\tau is continuous, in fact locally Lipschitz and the second derivatives of τ\tau exist almost everywhere.Comment: 19 pages, AEI preprint, latex2e with amsmath and amsth

    Equilibrium spin pulsars unite neutron star populations

    Full text link
    Many pulsars are formed with a binary companion from which they can accrete matter. Torque exerted by accreting matter can cause the pulsar spin to increase or decrease, and over long times, an equilibrium spin rate is achieved. Application of accretion theory to these systems provides a probe of the pulsar magnetic field. We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10 G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggests their magnetic field penetrates into the superconducting core of the neutron star.Comment: 6 pages, 4 figures; to appear in MNRA

    Residue currents associated with weakly holomorphic functions

    Get PDF
    We construct Coleff-Herrera products and Bochner-Martinelli type residue currents associated with a tuple ff of weakly holomorphic functions, and show that these currents satisfy basic properties from the (strongly) holomorphic case, as the transformation law, the Poincar\'e-Lelong formula and the equivalence of the Coleff-Herrera product and the Bochner-Martinelli type residue current associated with ff when ff defines a complete intersection.Comment: 28 pages. Updated with some corrections from the revision process. In particular, corrected and clarified some things in Section 5 and 6 regarding products of weakly holomorphic functions and currents, and the definition of the Bochner-Martinelli type current

    R-mode oscillations and rocket effect in rotating superfluid neutron stars. I. Formalism

    Full text link
    We derive the hydrodynamical equations of r-mode oscillations in neutron stars in presence of a novel damping mechanism related to particle number changing processes. The change in the number densities of the various species leads to new dissipative terms in the equations which are responsible of the {\it rocket effect}. We employ a two-fluid model, with one fluid consisting of the charged components, while the second fluid consists of superfluid neutrons. We consider two different kind of r-mode oscillations, one associated with comoving displacements, and the second one associated with countermoving, out of phase, displacements.Comment: 10 page

    Time-resolved extinction rates of stochastic populations

    Full text link
    Extinction of a long-lived isolated stochastic population can be described as an exponentially slow decay of quasi-stationary probability distribution of the population size. We address extinction of a population in a two-population system in the case when the population turnover -- renewal and removal -- is much slower than all other processes. In this case there is a time scale separation in the system which enables one to introduce a short-time quasi-stationary extinction rate W_1 and a long-time quasi-stationary extinction rate W_2, and develop a time-dependent theory of the transition between the two rates. It is shown that W_1 and W_2 coincide with the extinction rates when the population turnover is absent, and present but very slow, respectively. The exponentially large disparity between the two rates reflects fragility of the extinction rate in the population dynamics without turnover.Comment: 8 pages, 4 figure

    Second look at the spread of epidemics on networks

    Full text link
    In an important paper, M.E.J. Newman claimed that a general network-based stochastic Susceptible-Infectious-Removed (SIR) epidemic model is isomorphic to a bond percolation model, where the bonds are the edges of the contact network and the bond occupation probability is equal to the marginal probability of transmission from an infected node to a susceptible neighbor. In this paper, we show that this isomorphism is incorrect and define a semi-directed random network we call the epidemic percolation network that is exactly isomorphic to the SIR epidemic model in any finite population. In the limit of a large population, (i) the distribution of (self-limited) outbreak sizes is identical to the size distribution of (small) out-components, (ii) the epidemic threshold corresponds to the phase transition where a giant strongly-connected component appears, (iii) the probability of a large epidemic is equal to the probability that an initial infection occurs in the giant in-component, and (iv) the relative final size of an epidemic is equal to the proportion of the network contained in the giant out-component. For the SIR model considered by Newman, we show that the epidemic percolation network predicts the same mean outbreak size below the epidemic threshold, the same epidemic threshold, and the same final size of an epidemic as the bond percolation model. However, the bond percolation model fails to predict the correct outbreak size distribution and probability of an epidemic when there is a nondegenerate infectious period distribution. We confirm our findings by comparing predictions from percolation networks and bond percolation models to the results of simulations. In an appendix, we show that an isomorphism to an epidemic percolation network can be defined for any time-homogeneous stochastic SIR model.Comment: 29 pages, 5 figure

    A detailed study of quasinormal frequencies of the Kerr black hole

    Full text link
    We compute the quasinormal frequencies of the Kerr black hole using a continued fraction method. The continued fraction method first proposed by Leaver is still the only known method stable and accurate for the numerical determination of the Kerr quasinormal frequencies. We numerically obtain not only the slowly but also the rapidly damped quasinormal frequencies and analyze the peculiar behavior of these frequencies at the Kerr limit. We also calculate the algebraically special frequency first identified by Chandrasekhar and confirm that it coincide with the n=8n=8 quasinormal frequency only at the Schwarzschild limit.Comment: REVTEX, 15 pages, 7 eps figure
    corecore