23,735 research outputs found
The Cosmological Time Function
Let be a time oriented Lorentzian manifold and the Lorentzian
distance on . The function is the cosmological
time function of , where as usual means that is in the causal
past of . This function is called regular iff for all
and also along every past inextendible causal curve. If the
cosmological time function of a space time is regular it has
several pleasant consequences: (1) It forces to be globally hyperbolic,
(2) every point of can be connected to the initial singularity by a
rest curve (i.e., a timelike geodesic ray that maximizes the distance to the
singularity), (3) the function is a time function in the usual sense, in
particular (4) is continuous, in fact locally Lipschitz and the second
derivatives of exist almost everywhere.Comment: 19 pages, AEI preprint, latex2e with amsmath and amsth
Equilibrium spin pulsars unite neutron star populations
Many pulsars are formed with a binary companion from which they can accrete
matter. Torque exerted by accreting matter can cause the pulsar spin to
increase or decrease, and over long times, an equilibrium spin rate is
achieved. Application of accretion theory to these systems provides a probe of
the pulsar magnetic field. We compare the large number of recent torque
measurements of accreting pulsars with a high-mass companion to the standard
model for how accretion affects the pulsar spin period. We find that many long
spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10
G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the
strong-field solution is more compelling, in which case these pulsars are near
spin equilibrium. Our results provide evidence for a fundamental link between
pulsars with the slowest spin periods and strong magnetic fields around
high-mass companions and pulsars with the fastest spin periods and weak fields
around low-mass companions. The strong magnetic fields also connect our pulsars
to magnetars and strong-field isolated radio/X-ray pulsars. The strong field
and old age of our sources suggests their magnetic field penetrates into the
superconducting core of the neutron star.Comment: 6 pages, 4 figures; to appear in MNRA
Residue currents associated with weakly holomorphic functions
We construct Coleff-Herrera products and Bochner-Martinelli type residue
currents associated with a tuple of weakly holomorphic functions, and show
that these currents satisfy basic properties from the (strongly) holomorphic
case, as the transformation law, the Poincar\'e-Lelong formula and the
equivalence of the Coleff-Herrera product and the Bochner-Martinelli type
residue current associated with when defines a complete intersection.Comment: 28 pages. Updated with some corrections from the revision process. In
particular, corrected and clarified some things in Section 5 and 6 regarding
products of weakly holomorphic functions and currents, and the definition of
the Bochner-Martinelli type current
R-mode oscillations and rocket effect in rotating superfluid neutron stars. I. Formalism
We derive the hydrodynamical equations of r-mode oscillations in neutron
stars in presence of a novel damping mechanism related to particle number
changing processes. The change in the number densities of the various species
leads to new dissipative terms in the equations which are responsible of the
{\it rocket effect}. We employ a two-fluid model, with one fluid consisting of
the charged components, while the second fluid consists of superfluid neutrons.
We consider two different kind of r-mode oscillations, one associated with
comoving displacements, and the second one associated with countermoving, out
of phase, displacements.Comment: 10 page
Time-resolved extinction rates of stochastic populations
Extinction of a long-lived isolated stochastic population can be described as
an exponentially slow decay of quasi-stationary probability distribution of the
population size. We address extinction of a population in a two-population
system in the case when the population turnover -- renewal and removal -- is
much slower than all other processes. In this case there is a time scale
separation in the system which enables one to introduce a short-time
quasi-stationary extinction rate W_1 and a long-time quasi-stationary
extinction rate W_2, and develop a time-dependent theory of the transition
between the two rates. It is shown that W_1 and W_2 coincide with the
extinction rates when the population turnover is absent, and present but very
slow, respectively. The exponentially large disparity between the two rates
reflects fragility of the extinction rate in the population dynamics without
turnover.Comment: 8 pages, 4 figure
Second look at the spread of epidemics on networks
In an important paper, M.E.J. Newman claimed that a general network-based
stochastic Susceptible-Infectious-Removed (SIR) epidemic model is isomorphic to
a bond percolation model, where the bonds are the edges of the contact network
and the bond occupation probability is equal to the marginal probability of
transmission from an infected node to a susceptible neighbor. In this paper, we
show that this isomorphism is incorrect and define a semi-directed random
network we call the epidemic percolation network that is exactly isomorphic to
the SIR epidemic model in any finite population. In the limit of a large
population, (i) the distribution of (self-limited) outbreak sizes is identical
to the size distribution of (small) out-components, (ii) the epidemic threshold
corresponds to the phase transition where a giant strongly-connected component
appears, (iii) the probability of a large epidemic is equal to the probability
that an initial infection occurs in the giant in-component, and (iv) the
relative final size of an epidemic is equal to the proportion of the network
contained in the giant out-component. For the SIR model considered by Newman,
we show that the epidemic percolation network predicts the same mean outbreak
size below the epidemic threshold, the same epidemic threshold, and the same
final size of an epidemic as the bond percolation model. However, the bond
percolation model fails to predict the correct outbreak size distribution and
probability of an epidemic when there is a nondegenerate infectious period
distribution. We confirm our findings by comparing predictions from percolation
networks and bond percolation models to the results of simulations. In an
appendix, we show that an isomorphism to an epidemic percolation network can be
defined for any time-homogeneous stochastic SIR model.Comment: 29 pages, 5 figure
A detailed study of quasinormal frequencies of the Kerr black hole
We compute the quasinormal frequencies of the Kerr black hole using a
continued fraction method. The continued fraction method first proposed by
Leaver is still the only known method stable and accurate for the numerical
determination of the Kerr quasinormal frequencies. We numerically obtain not
only the slowly but also the rapidly damped quasinormal frequencies and analyze
the peculiar behavior of these frequencies at the Kerr limit. We also calculate
the algebraically special frequency first identified by Chandrasekhar and
confirm that it coincide with the quasinormal frequency only at the
Schwarzschild limit.Comment: REVTEX, 15 pages, 7 eps figure
- …