80,868 research outputs found

    Comparison of multi-scale analysis models applied to zonal flow generation in ion-temperature-gradient mode turbulence

    Full text link
    During the past years the understanding of the multi-scale interaction problems have increased significantly. However, at present there exists a range of different analytical models for investigating multi-scale interactions and hardly any specific comparisons have been performed among these models. In this work, two different models for the generation of zonal flows from ion-temperature-gradient (ITG) background turbulence are discussed and compared. The methods used is the coherent mode coupling model and the wave kinetic equation model (WKE). It is shown that the two models give qualitatively the same results even though the assumption on the spectral difference is used in the (WKE) approach.Comment: 17 pages, 6 figure

    Mean sheared flow and parallel ion motion effects on zonal flow generation in ion-temperature-gradient mode turbulence

    Full text link
    The present work investigates the direct interaction of sheared mean flow with zonal flows (ZF) and the effect of parallel ion motion on ZF generation in ion-temperature-gradient (ITG) background turbulence. An analytical model for the direct interaction of sheared mean flows with zonal flows is constructed. The model used for the toroidal ITG driven mode is based on the equations for ion continuity, ion temperature and parallel ion motion whereas the ZF evolution is described by the vorticity equation. The behavior of the ZF growth rate and real frequency is examined for typical tokamak parameters. It is shown that in general the zonal flow growth rate is suppressed by the presence of a sheared mean flow. In addition, with parallel ion motion effects the ZFs become more oscillatory for increasing ηi(=Ln/LTi)\eta_i (= L_n/L_{Ti}) value.Comment: 22 pages and 6 figure

    Design considerations for the airframe-integrated scramjet

    Get PDF
    Research programs at the NASA Langley Research Center on the development of airframe-integrated scramjet concepts (supersonic combustion ramjet) are reviewed briefly. The design and performance of a specific scramjet configuration are examined analytically by use of recently developed and substantiated techniques on boundary-layer development, heat transfer, fuel-air mixing, heat-release rates, and engine-cycle analysis. These studies indicate that the fixed-geometry scramjet module will provide practical levels of thrust performance with low cooling requirements. Areas which need particular emphasis in further development work are the combustor design for low speeds and the integrated nozzle design

    Evaluation of a bulk calorimeter and heat balance for determination of supersonic combustor efficiency

    Get PDF
    Results are presented from the shakedown and evaluation test of a bulk calorimeter. The calorimeter is designed to quench the combustion at the exit of a direct-connect, hydrogen fueled, scramjet combustor model, and to provide the measurements necessary to perform an analysis of combustion efficiency. Results indicate that the calorimeter quenches reaction, that reasonable response times are obtained, and that the calculated combustion efficiency is repeatable within + or -3 percent and varies in a regular way with combustor model parameters such as injected fuel equivalence ratio

    Patterns and trends in entrepreneurial network literature: 1993-2003

    Get PDF
    This paper reflects the increasing interest in entrepreneurial networking. Indeed Monsted (1995) suggests that networking is now a vogue concept in the entrepreneurship field. The popularity of the network theme has resulted in an increasing number of publications. Our study is an attempt to first quantify the growth in network research, as indicated by published papers. It then attempts to provide a guide to developments in network publications

    Quantifying Regeneration in Dye Sensitized Solar Cells: A Step Toward Red Absorbing Dyes having Lower Energy Loss

    No full text
    A limiting factor on DSSC efficiency is the lower fraction of the solar spectrum that is absorbed by the dye molecules developed to this point. Dye molecules that function well in DSSCs tend to have poor or no absorption to the red of 750 nm. Extending this absorption to the red by 100 nm, without losing efficiency in other ways, would result in a significant improvement in photocurrent. This challenge has proven difficult, in large part because of one slow reaction in the electron transfer cycle of DSSCs, the regeneration reaction. Better understanding of this reaction is thus critical. The kinetics of regeneration is understudied relative to the other processes in DSSCs, this is in part because the regeneration reaction produces no, as yet detected, measurable electrical signal. It must be studied by more difficult transient absorbance (TA) techniques. The first step of this thesis focuses on isolating a reliable transient signal that reflects the regeneration reaction. This is made by upgrading the conventional TA system to also acquire transient electrical (TE) signals simultaneously (TA-TE). The system is used to characterize dye-sensitized solar cells (DSSCs) under 1 sun illumination whilst the cells are fully operational and their stability is monitored. The second step of the work consists of the development of a methodology and a kinetic model which uses the isolated regeneration signal and a range of complimentary measurements on operating cells, to determine the quantum yield and the associated intrinsic rate constants and orders of the regeneration reaction. This enabled understanding of the regeneration mechanism and its optional rate limiting steps. Finally, the use of steady state photoinduced absorption (SSPA), as a complementary or alternative tool to assess regeneration, is also questioned. SSPA is compared with the regeneration TA –TE and charge extraction measurements

    Exploratory tests of two strut fuel injectors for supersonic combustion

    Get PDF
    Results of supersonic mixing and combustion tests performed with two simple strut injector configurations, one with parallel injectors and one with perpendicular injectors, are presented and analyzed. Good agreement is obtained between static pressure measured on the duct wall downstream of the strut injectors and distributions obtained from one-dimensional calculations. Measured duct heat load agrees with results of the one-dimensional calculations for moderate amounts of reaction, but is underestimated when large separated regions occur near the injection location. For the parallel injection strut, good agreement is obtained between the shape of the injected fuel distribution inferred from gas sample measurements at the duct exit and the distribution calculated with a multiple-jet mixing theory. The overall fraction of injected fuel reacted in the multiple-jet calculation closely matches the amount of fuel reaction necessary to match static pressure with the one-dimensional calculation. Gas sample measurements with the perpendicular injection strut also give results consistent with the amount of fuel reaction in the one-dimensional calculation

    A very high accuracy potential energy surface for H3

    Get PDF
    An exact quantum Monte Carlo (EQMC) method was used to calculate the potential energy surface (PES) for the ground electronic state of H3 over a grid of about 76000 nuclear geometries. The absolute abinitio statistical or sampling error of the calculation was ±0.01 kcal mol^-1 for energies (V) smaller than 3 eV. This PES was fitted by a three-dimensional cubic spline method and the fitting accuracy was determined from a set of 3684 randomly selected nuclear geometries not used in the fitting. For the range V3 eV the rms fitting error was ±0.010 kcal mol^-1, and the absolute value of the corresponding maximum error was 0.018 kcal mol^-1. This fitted EQMC PES is an order of magnitude more accurate than the best PES previously obtained for this system. Detailed comparisons are made with previous PESs, for the more dynamically important nuclear configurations
    • …
    corecore