4,679 research outputs found

    The Link between General Relativity and Shape Dynamics

    Full text link
    We show that one can construct two equivalent gauge theories from a linking theory and give a general construction principle for linking theories which we use to construct a linking theory that proves the equivalence of General Relativity and Shape Dynamics, a theory with fixed foliation but spatial conformal invariance. This streamlines the rather complicated construction of this equivalence performed previously. We use this streamlined argument to extend the result to General Relativity with asymptotically flat boundary conditions. The improved understanding of linking theories naturally leads to the Lagrangian formulation of Shape Dynamics, which allows us to partially relate the degrees of freedom.Comment: 19 pages, LaTeX, no figure

    Can the Pioneer anomaly be of gravitational origin? A phenomenological answer

    Full text link
    In order to satisfy the equivalence principle, any non-conventional mechanism proposed to gravitationally explain the Pioneer anomaly, in the form in which it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave out of consideration its impact on the motion of the planets of the Solar System as well, especially those orbiting in the regions in which the anomalous behavior of the Pioneer probes manifested itself. In this paper we, first, discuss the residuals of the right ascension \alpha and declination \delta of Uranus, Neptune and Pluto obtained by processing various data sets with different, well established dynamical theories (JPL DE, IAA EPM, VSOP). Second, we use the latest determinations of the perihelion secular advances of some planets in order to put on the test two gravitational mechanisms recently proposed to accommodate the Pioneer anomaly based on two models of modified gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered Uranus and Neptune to perform a further, independent test of the hypothesis that a Pioneer-like acceleration can also affect the motion of the outer planets of the Solar System. The obtained answers are negative.Comment: Latex2e, 26 pages, 6 tables, 2 figure, 47 references. It is the merging of gr-qc/0608127, gr-qc/0608068, gr-qc/0608101 and gr-qc/0611081. Final version to appear in Foundations of Physic

    Towards the noise reduction of piezoelectrical-driven synthetic jet actuators

    Get PDF
    This paper details an experimental investigation aimed at reducing the noise output of piezoelectrical-driven synthetic jet actuators without compromising peak jet velocity. Specifically, the study considers double-chamber ('back-to-back') actuators for anti-phase noise suppression and corrugated-lobed orifices as a method to enhance turbulent mixing of the jets to suppress jet noise. The study involved the design, manufacture and bench test of interchangeable actuator hardware. Hot-wire anemometry and microphone recordings were employed to acquire velocity and noise measurements respectively for each chamber configuration and orifice plate across a range of excitation frequencies and for a fixed input voltage. The data analysis indicated a 32% noise reduction (20 dBA) from operating a singlechamber, circular orifice SJA to a double-chamber, corrugated-lobed orifice SJA at the Helmholtz resonant frequency. Results also showed there was a small reduction in peak jet velocity of 7% (~3 m/s) between these two cases based on orifices of the same discharge area. Finally, the electrical-to-fluidic power conversion efficiency of the double-chamber actuator was found to be 15% across all orifice designs at the resonant frequency; approximately double the efficiency of a single-chamber actuator. This work has thus demonstrated feasible gains in noise reduction and power efficiency through synthetic jet actuator design

    Turbulence Hierarchy in a Random Fibre Laser

    Get PDF
    Turbulence is a challenging feature common to a wide range of complex phenomena. Random fibre lasers are a special class of lasers in which the feedback arises from multiple scattering in a one-dimensional disordered cavity-less medium. Here, we report on statistical signatures of turbulence in the distribution of intensity fluctuations in a continuous-wave-pumped erbium-based random fibre laser, with random Bragg grating scatterers. The distribution of intensity fluctuations in an extensive data set exhibits three qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture of two distributions with exponentially decaying tails near the threshold, and a mixture of distributions with stretched-exponential tails above threshold. All distributions are well described by a hierarchical stochastic model that incorporates Kolmogorov's theory of turbulence, which includes energy cascade and the intermittence phenomenon. Our findings have implications for explaining the remarkably challenging turbulent behaviour in photonics, using a random fibre laser as the experimental platform.Comment: 9 pages, 5 figure

    Einstein gravity as a 3D conformally invariant theory

    Get PDF
    We give an alternative description of the physical content of general relativity that does not require a Lorentz invariant spacetime. Instead, we find that gravity admits a dual description in terms of a theory where local size is irrelevant. The dual theory is invariant under foliation preserving 3-diffeomorphisms and 3D conformal transformations that preserve the 3-volume (for the spatially compact case). Locally, this symmetry is identical to that of Horava-Lifshitz gravity in the high energy limit but our theory is equivalent to Einstein gravity. Specifically, we find that the solutions of general relativity, in a gauge where the spatial hypersurfaces have constant mean extrinsic curvature, can be mapped to solutions of a particular gauge fixing of the dual theory. Moreover, this duality is not accidental. We provide a general geometric picture for our procedure that allows us to trade foliation invariance for conformal invariance. The dual theory provides a new proposal for the theory space of quantum gravity.Comment: 27 pages. Published version (minor changes and corrections

    Biodegradable nanoparticles containing benzopsoralens : an attractive strategy for modifying vascular function in pathological skin disorders

    Get PDF
    Psoralens are often used to treat skin disorders such as psoriasis, vitiligo and others. The toxicity and fast degradation of these drugs can be diminished by encapsulation in drug delivery systems (DDS). Nanoparticles (NPs) containing the benzopsoralen (BP) (3-ethoxy carbonyl-2H-benzofuro[3,2-e]-1-benzopiran-2-one) were prepared by the solvent evaporation technique, and parameters such as particle size, zeta potential, drug encapsulation efficiency, and external morphology were evaluated. The analysis revealed that the NPs are spherical and possessed a smooth external surface with diameter of 815 ± 80 nm, they present low tendency toward aggregation, as confirmed by their zeta potential (+17.3±2.9 mV) and the encapsulation efficiency obtained was 74%. The intracellular distribution of NPs as well as their uptake by tissues was monitored by using laser confocal microscopy and transmission electron microscopy. The use of benzopsoralen in association with ultraviolet light (360 nm) revealed morphological characteristics of cell damage such as cytosolic vesiculation, mitochondria condensation, and swelling of both the granular endoplasmic reticulum and the nuclear membrane. The primary target of DDS and drugs in vascular system are endothelial cells and an attractive strategy for modifying vascular function in various pathological states of skin disorders, cancer and inflammation. The result presented in this work indicates that PLGA NP could be a promising delivery system for benzopsoralen in connection with ultraviolet irradiation therapy (PUVA) for further application in different therapies.CNPq , CAPES, FAPESP (Braisl

    Surface albedo and temperature models for surface energy balance fluxes and evapotranspiration using SEBAL and Landsat 8 over Cerrado-Pantanal, Brazil

    Get PDF
    The determination of the surface energy balance fluxes (SEBFs) and evapotranspiration (ET) is fundamental in environmental studies involving the effects of land use change on the water requirement of crops. SEBFs and ET have been estimated by remote sensing techniques, but with the operation of new sensors, some variables need to be parameterized to improve their accuracy. Thus, the objective of this study is to evaluate the performance of algorithms used to calculate surface albedo and surface temperature on the estimation of SEBFs and ET in the Cerrado-Pantanal transition region of Mato Grosso, Brazil. Surface reflectance images of the Operational Land Imager (OLI) and brightness temperature (Tb) of the Thermal Infrared Sensor (TIRS) of the Landsat 8, and surface reflectance images of the MODIS MOD09A1 product from 2013 to 2016 were combined to estimate SEBF and ET by the surface energy balance algorithm for land (SEBAL), which were validated with measurements from two flux towers. The surface temperature (Ts) was recovered by different models from the Tb and by parameters calculated in the atmospheric correction parameter calculator (ATMCORR). A model of surface albedo (asup) with surface reflectance OLI Landsat 8 developed in this study performed better than the conventional model (acon) SEBFs and ET in the Cerrado-Pantanal transition region estimated with asup combined with Ts and Tb performed better than estimates with acon. Among all the evaluated combinations, SEBAL performed better when combining asup with the model developed in this study and the surface temperature recovered by the Barsi model (Tsbarsi ). This demonstrates the importance of an asup model based on surface reflectance and atmospheric surface temperature correction in estimating SEBFs and ET by SEBAL
    • …
    corecore