4,679 research outputs found
The Link between General Relativity and Shape Dynamics
We show that one can construct two equivalent gauge theories from a linking
theory and give a general construction principle for linking theories which we
use to construct a linking theory that proves the equivalence of General
Relativity and Shape Dynamics, a theory with fixed foliation but spatial
conformal invariance. This streamlines the rather complicated construction of
this equivalence performed previously. We use this streamlined argument to
extend the result to General Relativity with asymptotically flat boundary
conditions. The improved understanding of linking theories naturally leads to
the Lagrangian formulation of Shape Dynamics, which allows us to partially
relate the degrees of freedom.Comment: 19 pages, LaTeX, no figure
Can the Pioneer anomaly be of gravitational origin? A phenomenological answer
In order to satisfy the equivalence principle, any non-conventional mechanism
proposed to gravitationally explain the Pioneer anomaly, in the form in which
it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave
out of consideration its impact on the motion of the planets of the Solar
System as well, especially those orbiting in the regions in which the anomalous
behavior of the Pioneer probes manifested itself. In this paper we, first,
discuss the residuals of the right ascension \alpha and declination \delta of
Uranus, Neptune and Pluto obtained by processing various data sets with
different, well established dynamical theories (JPL DE, IAA EPM, VSOP). Second,
we use the latest determinations of the perihelion secular advances of some
planets in order to put on the test two gravitational mechanisms recently
proposed to accommodate the Pioneer anomaly based on two models of modified
gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered
Uranus and Neptune to perform a further, independent test of the hypothesis
that a Pioneer-like acceleration can also affect the motion of the outer
planets of the Solar System. The obtained answers are negative.Comment: Latex2e, 26 pages, 6 tables, 2 figure, 47 references. It is the
merging of gr-qc/0608127, gr-qc/0608068, gr-qc/0608101 and gr-qc/0611081.
Final version to appear in Foundations of Physic
Towards the noise reduction of piezoelectrical-driven synthetic jet actuators
This paper details an experimental investigation aimed at reducing the noise output of piezoelectrical-driven synthetic jet actuators without compromising peak jet velocity. Specifically, the study considers double-chamber ('back-to-back') actuators for anti-phase noise suppression and corrugated-lobed orifices as a method to enhance turbulent mixing of the jets to suppress jet noise. The study involved the design, manufacture and bench test of interchangeable actuator hardware. Hot-wire anemometry and microphone recordings were employed to acquire velocity and noise measurements respectively for each chamber configuration and orifice plate across a range of excitation frequencies and for a fixed input voltage. The data analysis indicated a 32% noise reduction (20 dBA) from operating a singlechamber, circular orifice SJA to a double-chamber, corrugated-lobed orifice SJA at the Helmholtz resonant frequency. Results also showed there was a small reduction in peak jet velocity of 7% (~3 m/s) between these two cases based on orifices of the same discharge area. Finally, the electrical-to-fluidic power conversion efficiency of the double-chamber actuator was found to be 15% across all orifice designs at the resonant frequency; approximately double the efficiency of a single-chamber actuator. This work has thus demonstrated feasible gains in noise reduction and power efficiency through synthetic jet actuator design
Turbulence Hierarchy in a Random Fibre Laser
Turbulence is a challenging feature common to a wide range of complex
phenomena. Random fibre lasers are a special class of lasers in which the
feedback arises from multiple scattering in a one-dimensional disordered
cavity-less medium. Here, we report on statistical signatures of turbulence in
the distribution of intensity fluctuations in a continuous-wave-pumped
erbium-based random fibre laser, with random Bragg grating scatterers. The
distribution of intensity fluctuations in an extensive data set exhibits three
qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture
of two distributions with exponentially decaying tails near the threshold, and
a mixture of distributions with stretched-exponential tails above threshold.
All distributions are well described by a hierarchical stochastic model that
incorporates Kolmogorov's theory of turbulence, which includes energy cascade
and the intermittence phenomenon. Our findings have implications for explaining
the remarkably challenging turbulent behaviour in photonics, using a random
fibre laser as the experimental platform.Comment: 9 pages, 5 figure
Einstein gravity as a 3D conformally invariant theory
We give an alternative description of the physical content of general
relativity that does not require a Lorentz invariant spacetime. Instead, we
find that gravity admits a dual description in terms of a theory where local
size is irrelevant. The dual theory is invariant under foliation preserving
3-diffeomorphisms and 3D conformal transformations that preserve the 3-volume
(for the spatially compact case). Locally, this symmetry is identical to that
of Horava-Lifshitz gravity in the high energy limit but our theory is
equivalent to Einstein gravity. Specifically, we find that the solutions of
general relativity, in a gauge where the spatial hypersurfaces have constant
mean extrinsic curvature, can be mapped to solutions of a particular gauge
fixing of the dual theory. Moreover, this duality is not accidental. We provide
a general geometric picture for our procedure that allows us to trade foliation
invariance for conformal invariance. The dual theory provides a new proposal
for the theory space of quantum gravity.Comment: 27 pages. Published version (minor changes and corrections
Biodegradable nanoparticles containing benzopsoralens : an attractive strategy for modifying vascular function in pathological skin disorders
Psoralens are often used to treat skin disorders such as psoriasis, vitiligo and others. The toxicity and fast degradation of these drugs can be diminished by encapsulation in drug delivery systems (DDS). Nanoparticles (NPs) containing the benzopsoralen (BP) (3-ethoxy carbonyl-2H-benzofuro[3,2-e]-1-benzopiran-2-one) were prepared by the solvent evaporation technique, and parameters such as particle size, zeta potential, drug encapsulation efficiency, and external morphology were evaluated. The analysis revealed that the NPs are spherical and possessed a smooth external surface with diameter of 815 ± 80 nm, they present low tendency toward aggregation, as confirmed by their zeta potential (+17.3±2.9 mV) and the encapsulation efficiency obtained was 74%. The intracellular distribution of NPs as well as their uptake by tissues was monitored by using laser confocal microscopy and transmission electron microscopy. The use of benzopsoralen in association with ultraviolet light (360 nm) revealed morphological characteristics of cell damage such as cytosolic vesiculation, mitochondria condensation, and swelling of both the granular endoplasmic reticulum and the nuclear membrane. The primary target of DDS and drugs in vascular system are endothelial cells and an attractive strategy for modifying vascular function in various pathological states of skin disorders, cancer and inflammation. The result presented in this work indicates that PLGA NP could be a promising delivery system for benzopsoralen in connection with ultraviolet irradiation therapy (PUVA) for further application in different therapies.CNPq , CAPES, FAPESP (Braisl
Surface albedo and temperature models for surface energy balance fluxes and evapotranspiration using SEBAL and Landsat 8 over Cerrado-Pantanal, Brazil
The determination of the surface energy balance fluxes (SEBFs) and evapotranspiration (ET) is fundamental in environmental studies involving the effects of land use change on the water requirement of crops. SEBFs and ET have been estimated by remote sensing techniques, but with the operation of new sensors, some variables need to be parameterized to improve their accuracy. Thus, the objective of this study is to evaluate the performance of algorithms used to calculate surface albedo and surface temperature on the estimation of SEBFs and ET in the Cerrado-Pantanal transition region of Mato Grosso, Brazil. Surface reflectance images of the Operational Land Imager (OLI) and brightness temperature (Tb) of the Thermal Infrared Sensor (TIRS) of the Landsat 8, and surface reflectance images of the MODIS MOD09A1 product from 2013 to 2016 were combined to estimate SEBF and ET by the surface energy balance algorithm for land (SEBAL), which were validated with measurements from two flux towers. The surface temperature (Ts) was recovered by different models from the Tb and by parameters calculated in the atmospheric correction parameter calculator (ATMCORR). A model of surface albedo (asup) with surface reflectance OLI Landsat 8 developed in this study performed better than the conventional model (acon) SEBFs and ET in the Cerrado-Pantanal transition region estimated with asup combined with Ts and Tb performed better than estimates with acon. Among all the evaluated combinations, SEBAL performed better when combining asup with the model developed in this study and the surface temperature recovered by the Barsi model (Tsbarsi ). This demonstrates the importance of an asup model based on surface reflectance and atmospheric surface temperature correction in estimating SEBFs and ET by SEBAL
- …