4,203 research outputs found

    Assessing the effect of DS-CDMA chip rate on RAKE branch statistics using a ray-tracing propagation model

    Get PDF

    Associations between daily mortality in London and combined oxidant capacity, ozone and nitrogen dioxide.

    Get PDF
    Both nitrogen dioxide (NO2) and ozone (O3) are powerful oxidants in ambient air that are intimately linked through atmospheric chemistry and which continuously interchange over very short timescales. Based upon atmospheric chemistry alone, there is a strong, a priori, reason for considering O3 and NO2 together in epidemiological studies, rather than either of the two pollutants separately in single-pollutant models. This paper compares two approaches to this, using Ox, defined as O3 + NO2, as a single metric and also using O3 and NO2 together in two-pollutant models. We hypothesised that the magnitude of the association between Ox and daily mortality would be greater than for NO2 and O3 individually. Using collocated hourly measurements for O3 and NO2 in London, from 2000 to 2005, we carried out a time series analysis of daily mortality. We investigated O3, NO2 and Ox individually in single-pollutant Poisson regression models and NO2 and O3 jointly in two-pollutant models in both all-year and season-specific analyses. We observed larger associations for mean 24-h concentrations of Ox (1.30 % increase in mortality per 10 ppb) than for O3 (0.87 %) and NO2 (0 %) individually. However, when analysed jointly in two-pollutant models, associations for O3 (1.54 %) and NO2 (1.07 %) were comparable to the Ox association. Season-specific analyses broadly followed this pattern irrespective of whether the Ox concentrations were driven by O3 production (summer) or depletion (winter). This novel approach in air pollution epidemiology captures the simultaneous impact of both oxidants whilst avoiding many of the statistical issues associated with two-pollutant models and potentially simplifies health impact calculations

    Fine particle components and health--a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions.

    Get PDF
    Short-term exposure to fine particle mass (PM) has been associated with adverse health effects, but little is known about the relative toxicity of particle components. We conducted a systematic review to quantify the associations between particle components and daily mortality and hospital admissions. Medline, Embase and Web of Knowledge were searched for time series studies of sulphate (SO4(2-)), nitrate (NO3(-)), elemental and organic carbon (EC and OC), particle number concentrations (PNC) and metals indexed to October 2013. A multi-stage sifting process identified eligible studies and effect estimates for meta-analysis. SO4(2-), NO3(-), EC and OC were positively associated with increased all-cause, cardiovascular and respiratory mortality, with the strongest associations observed for carbon: 1.30% (95% CI: 0.17%, 2.43%) increase in all-cause mortality per 1 μg/m(3). For PNC, the majority of associations were positive with confidence intervals that overlapped 0%. For metals, there were insufficient estimates for meta-analysis. There are important gaps in our knowledge of the health effects associated with short-term exposure to particle components, and the literature also lacks sufficient geographical coverage and analyses of cause-specific outcomes. The available evidence suggests, however, that both EC and secondary inorganic aerosols are associated with adverse health effects

    Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis

    Get PDF
    Background Short-term exposure to outdoor fine particulate matter (particles with a median aerodynamic diameter <2.5 μm (PM2.5)) air pollution has been associated with adverse health effects. Existing literature reviews have been limited in size and scope. Methods We conducted a comprehensive, systematic review and meta-analysis of 110 peer-reviewed time series studies indexed in medical databases to May 2011 to assess the evidence for associations between PM2.5 and daily mortality and hospital admissions for a range of diseases and ages. We stratified our analyses by geographical region to determine the consistency of the evidence worldwide and investigated small study bias. Results Based upon 23 estimates for all-cause mortality, a 10 µg/m3 increment in PM2.5 was associated with a 1.04% (95% CI 0.52% to 1.56%) increase in the risk of death. Worldwide, there was substantial regional variation (0.25% to 2.08%). Associations for respiratory causes of death were larger than for cardiovascular causes, 1.51% (1.01% to 2.01%) vs 0.84% (0.41% to 1.28%). Positive associations with mortality for most other causes of death and for cardiovascular and respiratory hospital admissions were also observed. We found evidence for small study bias in single-city mortality studies and in multicity studies of cardiovascular disease. Conclusions The consistency of the evidence for adverse health effects of short-term exposure to PM2.5 across a range of important health outcomes and diseases supports policy measures to control PM2.5 concentrations. However, reasons for heterogeneity in effect estimates in different regions of the world require further investigation. Small study bias should also be considered in assessing and quantifying health risks from PM2.

    Delivering manufacturing technology and workshop appreciation to engineering undergraduates using the flipped classroom approach

    Get PDF
    Delivery of manufacturing technology and practical workshop-based work, on undergraduate engineering courses that engage the learners, is challenging. The paper presents an experimental method of workshop delivery using the flipped learning approach, a pedagogical model in which the typical lecture and homework elements of a course are reversed. Video lectures are viewed by students prior to class. In-class time can be devoted to exercises, projects, or discussions as in this case. Learners were asked to observe three audiovisual clips in preparation for class. The objective was to determine whether the flipped classroom approach can enhance the learning experience, through better engagement with the students, compared to conventional classroom-based learning. The level of student participation and level of success have been established by means of feedback questionnaires from more than 100 participants and peer observation. The results are encouraging and demonstrate that this approach is favoured by the students

    Direct calculation of coherence bandwidth in urban microcells using a ray-tracing propagation model

    Get PDF

    Optimizing microcell base station locations using simulated annealing techniques

    Get PDF

    Reduction in both seasonal mortality and longer term mortality trends following restrictions on the sulphur content of fuel oil in Hong Kong (Abstract)

    Get PDF
    published_or_final_versio
    corecore