2,290 research outputs found
The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD came
Ghost imaging and ghost diffraction can be realized by using the spatial correlations between signal and idler photons produced by spontaneous parametric down-conversion. If an object is placed in the signal (idler) path, the spatial correlations between the transmitted photons as measured by a single, non-imaging, “bucket” detector and a scanning detector placed in the idler (signal) path can reveal either the image or diffraction pattern of the object, whereas neither detector signal on its own can. The details of the bucket detector, such as its collection area and numerical aperture, set the number of transverse modes supported by the system. For ghost imaging these details are less important, affecting mostly the sampling time required to produce the image. For ghost diffraction, however, the bucket detector must be filtered to a single, spatially coherent mode. We examine this difference in behavour by using either a multi-mode or single-mode fibre to define the detection aperture. Furthermore, instead of a scanning detector we use a heralded camera so that the image or diffraction pattern produced can be measured across the full field of view. The importance of a single mode detection in the observation of ghost diffraction is equivalent to the need within a classical diffraction experiment to illuminate the aperture with a spatially coherent mode
A Closed Class of Hydrodynamical Solutions for the Collective Excitations of a Bose-Einstein Condensate
A trajectory approach is taken to the hydrodynamical treatment of collective
excitations of a Bose-Einstein condensate in a harmonic trap. The excitations
induced by linear deformations of the trap are shown to constitute a broad
class of solutions that can be fully described by a simple nonlinear matrix
equation. An exact closed-form expression is obtained for the solution
describing the mode {n=0, m=2} in a cylindrically symmetric trap, and the
calculated amplitude-dependent frequency shift shows good agreement with the
experimental results of the JILA group.Comment: RevTex, 4 pages, 1 eps figure, identical to the published versio
Noise Can Reduce Disorder in Chaotic Dynamics
We evoke the idea of representation of the chaotic attractor by the set of
unstable periodic orbits and disclose a novel noise-induced ordering
phenomenon. For long unstable periodic orbits forming the strange attractor the
weights (or natural measure) is generally highly inhomogeneous over the set,
either diminishing or enhancing the contribution of these orbits into system
dynamics. We show analytically and numerically a weak noise to reduce this
inhomogeneity and, additionally to obvious perturbing impact, make a
regularizing influence on the chaotic dynamics. This universal effect is rooted
into the nature of deterministic chaos.Comment: 11 pages, 5 figure
Boundary of two mixed Bose-Einstein condensates
The boundary of two mixed Bose-Einstein condensates interacting repulsively
was considered in the case of spatial separation at zero temperature.
Analytical expressions for density distribution of condensates were obtained by
solving two coupled nonlinear Gross-Pitaevskii equations in cases corresponding
weak and strong separation. These expressions allow to consider excitation
spectrum of a particle confined in the vicinity of the boundary as well as
surface waves associated with surface tension.Comment: 6 pages, 3 figures, submitted to Phys.Rev.
Split vortices in optically coupled Bose-Einstein condensates
We study a rotating two-component Bose-Einstein condensate in which an
optically induced Josephson coupling allows for population transfer between the
two species. In a regime where separation of species is favored, the ground
state of the rotating system displays domain walls with velocity fields normal
to them. Such a configuration looks like a vortex split into two halves, with
atoms circulating around the vortex and changing their internal state in a
continuous way.Comment: 4 EPS pictures, 4 pages; Some errata have been corrected and thep
resentation has been slightly revise
The Anderson-Mott Transition as a Random-Field Problem
The Anderson-Mott transition of disordered interacting electrons is shown to
share many physical and technical features with classical random-field systems.
A renormalization group study of an order parameter field theory for the
Anderson-Mott transition shows that random-field terms appear at one-loop
order. They lead to an upper critical dimension for this model.
For the critical behavior is mean-field like. For an
-expansion yields exponents that coincide with those for the
random-field Ising model. Implications of these results are discussed.Comment: 8pp, REVTeX, db/94/
Nonequilibrium dynamics of random field Ising spin chains: exact results via real space RG
Non-equilibrium dynamics of classical random Ising spin chains are studied
using asymptotically exact real space renormalization group. Specifically the
random field Ising model with and without an applied field (and the Ising spin
glass (SG) in a field), in the universal regime of a large Imry Ma length so
that coarsening of domains after a quench occurs over large scales. Two types
of domain walls diffuse in opposite Sinai random potentials and mutually
annihilate. The domain walls converge rapidly to a set of system-specific
time-dependent positions {\it independent of the initial conditions}. We obtain
the time dependent energy, magnetization and domain size distribution
(statistically independent). The equilibrium limits agree with known exact
results. We obtain exact scaling forms for two-point equal time correlation and
two-time autocorrelations. We also compute the persistence properties of a
single spin, of local magnetization, and of domains. The analogous quantities
for the spin glass are obtained. We compute the two-point two-time correlation
which can be measured by experiments on spin-glass like systems. Thermal
fluctuations are found to be dominated by rare events; all moments of truncated
correlations are computed. The response to a small field applied after waiting
time , as measured in aging experiments, and the fluctuation-dissipation
ratio are computed. For ,
, it equals its equilibrium value X=1, though time
translational invariance fails. It exhibits for aging regime
with non-trivial , different from mean field.Comment: 55 pages, 9 figures, revte
Testing Broken U(1) Symmetry in a Two-Component Atomic Bose-Einstein Condensate
We present a scheme for determining if the quantum state of a small trapped
Bose-Einstein condensate is a state with well defined number of atoms, a Fock
state, or a state with a broken U(1) gauge symmetry, a coherent state. The
proposal is based on the observation of Ramsey fringes. The population
difference observed in a Ramsey fringe experiment will exhibit collapse and
revivals due to the mean-field interactions. The collapse and revival times
depend on the relative strength of the mean-field interactions for the two
components and the initial quantum state of the condensate.Comment: 20 Pages RevTex, 3 Figure
Expansion of a Bose-Einstein Condensate in an atomic waveguide
The expansion of a Bose-Einstein condensate in an atomic waveguide is
analyzed. We study different regimes of expansion, and identify a transient
regime between one-dimensional and three-dimensional dynamics, in which the
properties of the condensate and its further expansion can be well explained by
reducing the transversal dynamics to a two-level system. The relevance of this
regime in current experiments is discussed.Comment: 4 pages, 3 figs, Accepted for publication in Phys. Rev.
Pocket Monte Carlo algorithm for classical doped dimer models
We study the correlations of classical hardcore dimer models doped with
monomers by Monte Carlo simulation. We introduce an efficient cluster
algorithm, which is applicable in any dimension, for different lattices and
arbitrary doping. We use this algorithm for the dimer model on the square
lattice, where a finite density of monomers destroys the critical confinement
of the two-monomer problem. The monomers form a two-component plasma located in
its high-temperature phase, with the Coulomb interaction screened at finite
densities. On the triangular lattice, a single pair of monomers is not
confined. The monomer correlations are extremely short-ranged and hardly change
with doping.Comment: 6 pages, REVTeX
- …
