91,384 research outputs found
Physics of the Pseudogap State: Spin-Charge Locking
The properties of the pseudogap phase above Tc of the high-Tc cuprate
superconductors are described by showing that the Anderson-Nambu SU(2) spinors
of an RVB spin gap 'lock' to those of the electron charge system because of the
resulting improvement of kinetic energy. This enormously extends the range of
the vortex liquid state in these materials. As a result it is not clear that
the spinons are ever truly deconfined. A heuristic description of the
electrodynamics of this pseudogap-vortex liquid state is proposed.Comment: Submitted to Phys Rev Letter
Digital data transition tracking loop improves data reception
Transition tracking loop eliminates drifts, leakages, and instabilities inherent in analog filters. Major components are the phase detector, loop filter, voltage-controlled oscillator and timing logic
Bearings use dry self-lubricating cage materials
Rolling element bearings in spacecraft mechanical systems use solid lubricant composites of polytetrafluoroethylene in the bearing cage which functions as the lubricant reservoir. The cage spaces the rolling elements equally and provides the lubricant at the bearing load-carrying surface
Experimental Observations of Aerodynamic and Heating Test on Insulating Heat Shields
Several different types of insulating heat shields have been subjected to aerodynamic tests and radiant-heating tests in order to obtain a better insight into the problems involved when the primary structure of m aerodynamically heated vehicle is substantially cooler than the exposed external surface. One of the main problems was considered to be a proper allowance for thermal expansion caused by these large temperature differences, so that undue distortion or thermal stresses would not occur in either the outer shield or the underlying structure. corrugated outer skin with suitably designed expansion joints was a feature of all the specimens tested
The origin of phase in the interference of Bose-Einstein condensates
We consider the interference of two overlapping ideal Bose-Einstein
condensates. The usual description of this phenomenon involves the introduction
of a so-called condensate wave functions having a definite phase. We
investigate the origin of this phase and the theoretical basis of treating
interference. It is possible to construct a phase state, for which the particle
number is uncertain, but phase is known. However, how one would prepare such a
state before an experiment is not obvious. We show that a phase can also arise
from experiments using condensates in Fock states, that is, having known
particle numbers. Analysis of measurements in such states also gives us a
prescription for preparing phase states. The connection of this procedure to
questions of ``spontaneously broken gauge symmetry'' and to ``hidden
variables'' is mentioned.Comment: 22 pages 4 figure
Neutron irradiation of Am-241 effectively produces curium
Computer study was made on the production of multicurie amounts of highly alpha-active curium 242 from americium 241 irradiation. The information available includes curium 242 yields, curium composition, irradiation data, and production techniques and safeguards
Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data
Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis
On thermal stress failure of the SNAP-19A RTG heat shield
Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material
Electronic structure of strongly correlated d-wave superconductors
We study the electronic structure of a strongly correlated d-wave
superconducting state. Combining a renormalized mean field theory with direct
calculation of matrix elements, we obtain explicit analytical results for the
nodal Fermi velocity, v_F, the Fermi wave vector, k_F, and the momentum
distribution, n_k, as a function of hole doping in a Gutzwiller projected
d-wave superconductor. We calculate the energy dispersion, E_k, and spectral
weight of the Gutzwiller-Bogoliubov quasiparticles, and find that the spectral
weight associated with the quasiparticle excitation at the antinodal point
shows a non monotonic behavior as a function of doping. Results are compared to
angle resolved photoemission spectroscopy (ARPES) of the high temperature
superconductors.Comment: final version, comparison to experiments added, 4+ pages, 4 figure
- …