67,287 research outputs found

    Computation of three-dimensional nozzle-exhaust flow fields with the GIM code

    Get PDF
    A methodology is introduced for constructing numerical analogs of the partial differential equations of continuum mechanics. A general formulation is provided which permits classical finite element and many of the finite difference methods to be derived directly. The approach, termed the General Interpolants Method (GIM), can combined the best features of finite element and finite difference methods. A quasi-variational procedure is used to formulate the element equations, to introduce boundary conditions into the method and to provide a natural assembly sequence. A derivation is given in terms of general interpolation functions from this procedure. Example computations for transonic and supersonic flows in two and three dimensions are given to illustrate the utility of GIM. A three-dimensional nozzle-exhaust flow field is solved including interaction with the freestream and a coupled treatment of the shear layer. Potential applications of the GIM code to a variety of computational fluid dynamics problems is then discussed in terms of existing capability or by extension of the methodology

    Power filters for gravitational wave bursts: network operation for source position estimation

    Full text link
    A method is presented to generalize the power detectors for short bursts of gravitational waves that have been developed for single interferometers so that they can optimally process data from a network of interferometers. The performances of this method for the estimation of the position of the source are studied using numerical simulations.Comment: To appear in the proceedings of GWDAW 2002 (Classical and Quantum Gravity, Special issue

    Vacuum Polarisation and the Black Hole Singularity

    Get PDF
    In order to investigate the effects of vacuum polarisation on mass inflation singularities, we study a simple toy model of a charged black hole with cross flowing radial null dust which is homogeneous in the black hole interior. In the region r2e2r^2 \ll e^2 we find an approximate analytic solution to the classical field equations. The renormalized stress-energy tensor is evaluated on this background and we find the vacuum polarisation backreaction corrections to the mass function m(r)m(r). Asymptotic analysis of the semiclassical mass function shows that the mass inflation singularity is much stronger in the presence of vacuum polarisation than in the classical case.Comment: 12 pages, RevTe

    Edge coating of flat wires

    Get PDF
    An apparatus and technique is described for the coating of the edge surfaces of flat ribbon conductors with an adherent coating of a dielectric insulating material. Means for passing the ribbon conductors between a pair of generally axially aligned rollers is provided. The edge surfaces of the conductor are disposed adjacent to and generally tangentially to the confronting surfaces of the roller so as to form a fillet of dielectric material along the edge surface of the conductor

    What is moving in silica at 1 K? A computer study of the low-temperature anomalies

    Full text link
    Though the existence of two-level systems (TLS) is widely accepted to explain low temperature anomalies in many physical observables, knowledge about their properties is very rare. For silica which is one of the prototype glass-forming systems we elucidate the properties of the TLS via computer simulations by applying a systematic search algorithm. We get specific information in the configuration space, i.e. about relevant energy scales, the absolute number of TLS and electric dipole moments. Furthermore important insight about the real-space realization of the TLS can be obtained. Comparison with experimental observations is included

    Large-UU limit of a Hubbard model in a magnetic field: chiral spin interactions and paramagnetism

    Full text link
    We consider the large-UU limit of the one-band Hubbard model at half-filling on a non-bipartite two-dimensional lattice. An external magnetic field can induce a three-spin chiral interaction at order 1/U2 1 / U^2 ~. We discuss situations in which, at low temperatures, the chiral term may have a larger effect than the Pauli coupling of electron spins to a magnetic field. We present a model which explicitly demonstrates this. The ground state is a singlet with a gap; hence the spin susceptibility is zero while the chiral susceptibility is finite and paramagnetic.Comment: 12 pages, plain TeX, one figure available on request, to appear in Phys. Rev.

    c-axis transport and phenomenology of the pseudo-gap state in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We measure and analyze the resistivity of Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} crystals for different doping δ\delta. We obtain the fraction of carrier η(T,δ)=ng/nTOT\eta(T,\delta) = n_g/n_{TOT} that do not participate to the c-axis conductivity. All the curves η(T,δ)\eta(T,\delta) collapse onto a universal curve when plotted against a reduced temperature x=[TΘ(δ)]/Δ(δ)x=[T-\Theta(\delta)]/\Delta^{*}(\delta). We find that at the superconducting transition ngn_g is doping independent. We also show that a magnetic field up to 14 T does not affect the degree of localization in the (a,b) planes but widens the temperature range of the x-scaling by suppressing the superconducting phase coherence.Comment: 11 pages, 5 figures, submitted to Phys.Rev.
    corecore