3,018 research outputs found

    Combined visible and near-infrared OPA for wavelength scaling experiments in strong-field physics

    Full text link
    We report the operation of an optical parametric amplifier (OPA) capable of producing gigawatt peak-power laser pulses with tunable wavelength in either the visible or near-infrared spectrum. The OPA has two distinct operation modes (i) generation of >350 uJ, sub 100 fs pulses, tunable between 1250 - 1550 nm; (ii) generation of >190 uJ, sub 150 fs pulses tunable between 490 - 530 nm. We have recorded high-order harmonic spectra over a wide range of driving wavelengths. This flexible source of femtosecond pulses presents a useful tool for exploring the wavelength-dependence of strong-field phenomena, in both the multi-photon and tunnel ionization regimes.Comment: 14 pages, 9 figures, This paper was published in Proceedings of SPIE 10088, Nonlinear Frequency Generation and Conversion: Materials and Devices XVI, doi 10.1117/12.225077

    Theory of Quasi-Particles in the Underdoped High Tc Superconducting State

    Full text link
    The microscopic theory of superconducting (SC) state in the SU(2) slave-boson model is developed. We show how the pseudogap and Fermi surface (FS) segments in the normal state develop into a d-wave gap in the superconducting state. Even though the superfluid density is of order x (the doping concentration), the physical properties of the low lying quasiparticles are found to resemble those in BCS theory. Thus the microscopic theory lay the foundation for our earlier phenomenological discussion of the unusual SC properties in the underdoped cuprates.Comment: 4 pages in RevTeX, 1 figure in eps, revised versio

    Microglial responses around intrinsic CNS neurons are correlated with axonal regeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia/macrophages and lymphocytes (T-cells) accumulate around motor and primary sensory neurons that are regenerating axons but there is little or no microglial activation or T-cell accumulation around axotomised intrinsic CNS neurons, which do not normally regenerate axons. We aimed to establish whether there was an inflammatory response around the perikarya of CNS neurons that were induced to regenerate axons through a peripheral nerve graft.</p> <p>Results</p> <p>When neurons of the thalamic reticular nucleus (TRN) and red nucleus were induced to regenerate axons along peripheral nerve grafts, a marked microglial response was found around their cell bodies, including the partial enwrapping of some regenerating neurons. T-cells were found amongst regenerating TRN neurons but not rubrospinal neurons. Axotomy alone or insertion of freeze-killed nerve grafts did not induce a similar perineuronal inflammation. Nerve grafts in the corticospinal tracts did not induce axonal regeneration or a microglial or T-cell response in the motor cortex.</p> <p>Conclusions</p> <p>These results strengthen the evidence that perineuronal microglial accumulation (but not T-cell accumulation) is involved in axonal regeneration by intrinsic CNS and other neurons.</p

    Analysis of axonal regeneration in the central and peripheral nervous systems of the NG2-deficient mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve.</p> <p>Results</p> <p>We studied axonal regeneration in the PNS and CNS of genetically engineered mice that do not express NG2, and in sex and age matched wild-type controls. In the CNS, we used anterograde tracing with BDA to study corticospinal tract (CST) axons after spinal cord injury and transganglionic labelling with CT-HRP to trace ascending sensory dorsal column (DC) axons after DC lesions and a conditioning lesion of the sciatic nerve. Injury to these fibre tracts resulted in no difference between knockout and wild-type mice in the ability of CST axons or DC axons to enter or cross the lesion site. Similarly, after dorsal root injury (with conditioning lesion), most regenerating dorsal root axons failed to grow across the dorsal root entry zone in both transgenic and wild-type mice.</p> <p>Following sciatic nerve injuries, functional recovery was assessed by analysis of the toe-spreading reflex and cutaneous sensitivity to Von Frey hairs. Anatomical correlates of regeneration were assessed by: retrograde labelling of regenerating dorsal root ganglion (DRG) cells with DiAsp; immunostaining with PGP 9.5 to visualise sensory reinnervation of plantar hindpaws; electron microscopic analysis of regenerating axons in tibial and digital nerves; and by silver-cholinesterase histochemical study of motor end plate reinnervation. We also examined functional and anatomical correlates of regeneration after injury of the facial nerve by assessing the time taken for whisker movements and corneal reflexes to recover and by retrograde labelling of regenerated axons with Fluorogold and DiAsp. None of the anatomical or functional analyses revealed significant differences between wild-type and knockout mice.</p> <p>Conclusion</p> <p>These findings show that NG2 is unlikely to be a major inhibitor of axonal regeneration after injury to the CNS, and, further, that NG2 is unlikely to be necessary for regeneration or functional recovery following peripheral nerve injury.</p

    High intensity pulse self-compression in short hollow core capillaries

    No full text
    The drive for shorter pulses for use in techniques such as high harmonic generation and laser wakefield acceleration requires continual improvement in post-laser pulse compression techniques. The two most commonly used methods of pulse compression for high intensity pulses are hollow capillary compression via self-phase modulation (SPM) [1] and the more recently developed filamentation [2]. Both of these methods can require propagation distances of 1-3 m to achieve spectral broadening and compression. Additionally, hollow capillary compression requires post compression of the broadened pulse by chirped mirrors. Filamentation trades the efficiency of hollow capillary compression (67%) for ionisation-induced pulse self-compression. A mixture of SPM and plasma generation increases the spectral bandwidth of the pulse; however this occurs only in a small region at the centre of the beam. Spatial filtering is required to achieve the shortest pulses, reducing the efficiency to 20%. Although the majority of hollow core capillary compression requires long propagation distances, compression in short capillaries [3] with significant plasma generation has been demonstrated to be a promising technique

    Degenerate Bose liquid in a fluctuating gauge field

    Full text link
    We study the effect of a strongly fluctuating gauge field on a degenerate Bose liquid, relevant to the charge degrees of freedom in doped Mott insulators. We find that the superfluidity is destroyed. The resulting metallic phase is studied using quantum Monte Carlo methods. Gauge fluctuations cause the boson world lines to retrace themselves. We examine how this world-line geometry affects the physical properties of the system. In particular, we find a transport relaxation rate of the order of 2kT, consistent with the normal state of the cuprate superconductors. We also find that the density excitations of this model resemble that of the full tJ model.Comment: 4 pages. Uses RevTeX, epsf, multicols macros. 5 postscript figure
    corecore