89,654 research outputs found

    Physics of the Pseudogap State: Spin-Charge Locking

    Full text link
    The properties of the pseudogap phase above Tc of the high-Tc cuprate superconductors are described by showing that the Anderson-Nambu SU(2) spinors of an RVB spin gap 'lock' to those of the electron charge system because of the resulting improvement of kinetic energy. This enormously extends the range of the vortex liquid state in these materials. As a result it is not clear that the spinons are ever truly deconfined. A heuristic description of the electrodynamics of this pseudogap-vortex liquid state is proposed.Comment: Submitted to Phys Rev Letter

    The BSSN formulation is a partially constrained evolution system

    Full text link
    Relativistic simulations in 3+1 dimensions typically monitor the Hamiltonian and momentum constraints during evolution, with significant violations of these constraints indicating the presence of instabilities. In this paper we rewrite the momentum constraints as first-order evolution equations, and show that the popular BSSN formulation of the Einstein equations explicitly uses the momentum constraints as evolution equations. We conjecture that this feature is a key reason for the relative success of the BSSN formulation in numerical relativity.Comment: 8 pages, minor grammatical correction

    Thermodynamics of an incommensurate quantum crystal

    Full text link
    We present a simple theory of the thermodynamics of an incommensurate quantum solid. The ground state of the solid is assumed to be an incommensurate crystal, with quantum zero-point vacancies and interstitials and thus a non-integer number of atoms per unit cell. We show that the low temperature variation of the net vacancy concentration should be as T4T^4, and that the first correction to the specific heat due to this varies as T7T^7; these are quite consistent with experiments on solid 4^4He. We also make some observations about the recent experimental reports of ``supersolidity'' in solid 4^4He that motivate a renewed interest in quantum crystals.Comment: revised, new title, somewhat expande

    Spontaneous superconductivity and optical properties of high-Tc cuprates

    Full text link
    We suggest that the high temperature superconductivity in cuprate compounds may emerge due to interaction between copper-oxygen layers mediated by in-plane plasmons. The strength of the interaction is determined by the c-axis geometry and by the ab-plane optical properties. Without making reference to any particular in-plane mechanism of superconductivity, we show that the interlayer interaction favors spontaneous appearance of the superconductivity in the layers. At a qualitative level the model describes correctly the dependence of the transition temperature on the interlayer distance, and on the number of adjacent layers in multilayered homologous compounds. Moreover, the model has a potential to explain (i) a mismatch between the optimal doping levels for critical temperature and superconducting density and (ii) a universal scaling relation between the dc-conductivity, the superfluid density, and the superconducting transition temperature.Comment: 4.4 pages, 2 figures; v2 matches the published version (clarifying remarks and references are added

    The origin of phase in the interference of Bose-Einstein condensates

    Get PDF
    We consider the interference of two overlapping ideal Bose-Einstein condensates. The usual description of this phenomenon involves the introduction of a so-called condensate wave functions having a definite phase. We investigate the origin of this phase and the theoretical basis of treating interference. It is possible to construct a phase state, for which the particle number is uncertain, but phase is known. However, how one would prepare such a state before an experiment is not obvious. We show that a phase can also arise from experiments using condensates in Fock states, that is, having known particle numbers. Analysis of measurements in such states also gives us a prescription for preparing phase states. The connection of this procedure to questions of ``spontaneously broken gauge symmetry'' and to ``hidden variables'' is mentioned.Comment: 22 pages 4 figure

    Computational Methods and Results for Structured Multiscale Models of Tumor Invasion

    Full text link
    We present multiscale models of cancer tumor invasion with components at the molecular, cellular, and tissue levels. We provide biological justifications for the model components, present computational results from the model, and discuss the scientific-computing methodology used to solve the model equations. The models and methodology presented in this paper form the basis for developing and treating increasingly complex, mechanistic models of tumor invasion that will be more predictive and less phenomenological. Because many of the features of the cancer models, such as taxis, aging and growth, are seen in other biological systems, the models and methods discussed here also provide a template for handling a broader range of biological problems

    Spin-Charge separation in a model of two coupled chains

    Full text link
    A model of interacting electrons living on two chains coupled by a transverse hopping tt_\perp, is solved exactly by bosonization technique. It is shown that tt_\perp does modify the shape of the Fermi surface also in presence of interaction, although charge and spin excitations keep different velocities uρu_\rho, uσu_\sigma. Two different regimes occur: at short distances, xξ=(uρuσ)/4tx\ll \xi = (u_\rho - u_\sigma)/4t_\perp, the two chain model is not sensitive to tt_\perp, while for larger separation xξx\gg \xi inter--chain hopping is relevant and generates further singularities in the electron Green function besides those due to spin-charge decoupling. (2 figures not included. Figure requests: FABRIZIO@ITSSISSA)Comment: 12 pages, LATEX(REVTEX), SISSA 150/92/CM/M

    Selections from: Despite the Falling Snow

    Get PDF

    A selection from: Despite the Falling Snow

    Get PDF
    corecore