2,408 research outputs found
Origin of ferroelectricity in the multiferroic barium fluorides BaMF4
We present a first principles study of the series of multiferroic barium
fluorides with the composition BaMF4, where M is Mn, Fe, Co, or Ni. We discuss
trends in the structural, electronic, and magnetic properties, and we show that
the ferroelectricity in these systems results from the "freezing in" of a
single unstable polar phonon mode. In contrast to the case of the standard
perovskite ferroelectrics, this structural distortion is not accompanied by
charge transfer between cations and anions. Thus, the ferroelectric instability
in the multiferroic barium fluorides arises solely due to size effects and the
special geometrical constraints of the underlying crystal structure.Comment: 8 pages, 6 figures, 3 table
Using XR (extended reality) for behavioral, clinical, and learning sciences requires updates in infrastructure and funding
Extended reality (XR, including Augmented and Virtual Reality) creates a powerful
intersection between information technology and cognitive, clinical, and education
sciences. XR technology has long captured the public imagination, and its development is
the focus of major technology companies. This article demonstrates the potential of XR to
(1) deliver behavioral insights, (2) transform clinical treatments, and (3) improve learning
and education. However, without appropriate policy, funding, and infrastructural
investment, many research institutions will struggle to keep pace with the advances and
opportunities of XR. To realize the full potential of XR for basic and translational research,
funding should incentivize (1) appropriate training, (2) open software solutions, and (3)
collaborations between complementary academic and industry partners. Bolstering the XR
research infrastructure with the right investments and incentives is vital for delivering on
the potential for transformative discoveries, innovations, and applications
Recommended from our members
Novel Human-Like H3 Influenza A Viruses in Pigs
UNLABELLED: Human-like swine H3 influenza A viruses (IAV) were detected by the USDA surveillance system. We characterized two novel swine human-like H3N2 and H3N1 viruses with hemagglutinin (HA) genes similar to those in human seasonal H3 strains and internal genes closely related to those of 2009 H1N1 pandemic viruses. The H3N2 neuraminidase (NA) was of the contemporary human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both viruses were antigenically distant from swine H3 viruses that circulate in the United States and from swine vaccine strains and also showed antigenic drift from human seasonal H3N2 viruses. Their pathogenicity and transmission in pigs were compared to those of a human H3N2 virus with a common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and were transmitted to indirect contacts, whereas the human H3N2 virus did so much less efficiently. To evaluate the role of genes from the swine isolates in their pathogenesis, reverse genetics-generated reassortants between the swine human-like H3N1 virus and the seasonal human H3N2 virus were tested in pigs. The contribution of the gene segments to virulence was complex, with the swine HA and internal genes showing effects in vivo. The experimental infections indicate that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and the naturally occurring mutations in the HA were associated with antigenic divergence from H3 IAV from humans and swine. Consequently, these viruses could have a significant impact on the swine industry if they were to cause more widespread outbreaks, and the potential risk of these emerging swine IAV to humans should be considered. IMPORTANCE: Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine transmissions of IAV have resulted in the circulation of reassortant viruses containing human-origin genes in pigs, greatly contributing to the diversity of IAV in swine worldwide. New human-like H3N2 and H3N1 viruses that contain a mix of human and swine gene segments were recently detected by the USDA surveillance system. The human-like viruses efficiently infected pigs and resulted in onward airborne transmission, likely due to the multiple changes identified between human and swine H3 viruses. The human-like swine viruses are distinct from contemporary U.S. H3 swine viruses and from the strains used in swine vaccines, which could have a significant impact on the swine industry due to a lack of population immunity. Additionally, public health experts should consider an appropriate assessment of the risk of these emerging swine H3 viruses for the human population.We gratefully acknowledge pork producers, swine veterinarians, and laboratories for participating in the USDA Influenza Virus Surveillance System for swine. The authors thank Michelle Harland and Gwen Nordholm for assistance with laboratory techniques, and Jason Huegel, Ty Standley, and Jason Crabtree for assistance with animal studies. We thank Dr Susan Brockmeier for assisting with bacterial screening and Kerrie Franzen for whole genome sequencing. Funding was provided from USDA-ARS and USDA- APHIS. D.S. Rajao was a CNPq-Brazil scholarship recipient. T.K. Anderson and E.J. Abente were supported in part by an appointment to the ARS-USDA Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and USDA. ORISE is managed by ORAU under DOE contract number DE- AC05-06OR23100.This is the author accepted manuscript. The final version is available from the American Society for Microbiology via http://dx.doi.org/10.1128/JVI.01675-1
Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation
On the basis of recent investigations, a newly developed analytical procedure
is used for constructing a wide class of localized solutions of the controlled
three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the
dynamics of Bose-Einstein condensates (BECs). The controlled 3D GPE is
decomposed into a two-dimensional (2D) linear Schr\"{o}dinger equation and a
one-dimensional (1D) nonlinear Schr\"{o}dinger equation, constrained by a
variational condition for the controlling potential. Then, the above class of
localized solutions are constructed as the product of the solutions of the
transverse and longitudinal equations. On the basis of these exact 3D
analytical solutions, a stability analysis is carried out, focusing our
attention on the physical conditions for having collapsing or non-collapsing
solutions.Comment: 21 pages, 14 figure
Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding
Regulation of mRNA translation is a major control point for gene expression and is critical for life. Of central importance is the complex between cap-bound eukaryotic initiation factor 4E (eIF4E), eIF4G, and poly(A) tail-binding protein (PABP) that circularizes mRNAs, promoting translation and stability. This complex is often targeted to regulate overall translation rates, and also by mRNA-specific translational repressors. However, the mechanisms of mRNA-specific translational activation by RNA-binding proteins remain poorly understood. Here, we address this deficit, focusing on a herpes simplex virus-1 protein, ICP27. We reveal a direct interaction with PABP that is sufficient to promote PABP recruitment and necessary for ICP27-mediated activation. PABP binds several translation factors but is primarily considered to activate translation initiation as part of the PABP-eIF4G-eIF4E complex that stimulates the initial cap-binding step. Importantly, we find that ICP27-PABP forms a complex with, and requires the activity of, eIF4G. Surprisingly, ICP27-PABP-eIF4G complexes act independently of the effects of PABP-eIF4G on cap binding to promote small ribosomal subunit recruitment. Moreover, we find that a cellular mRNA-specific regulator, Deleted in Azoospermia-like (Dazl), also employs the PABP-eIF4G interaction in a similar manner. We propose a mechanism whereby diverse RNA-binding proteins directly recruit PABP, in a non-poly(A) tail-dependent manner, to stimulate the small subunit recruitment step. This strategy may be particularly relevant to biological conditions associated with hypoadenylated mRNAs (e.g., germ cells/neurons) and/or limiting cytoplasmic PABP (e.g., viral infection, cell stress). This mechanism adds significant insight into our knowledge of mRNA-specific translational activation and the function of the PABP-eIF4G complex in translation initiation
Symptom burden and health-related quality of life in chronic kidney disease:A global systematic review and meta-analysis
BACKGROUND: The importance of patient-reported outcome measurement in chronic kidney disease (CKD) populations has been established. However, there remains a lack of research that has synthesised data around CKD-specific symptom and health-related quality of life (HRQOL) burden globally, to inform focused measurement of the most relevant patient-important information in a way that minimises patient burden. The aim of this review was to synthesise symptom prevalence/severity and HRQOL data across the following CKD clinical groups globally: (1) stage 1-5 and not on renal replacement therapy (RRT), (2) receiving dialysis, or (3) in receipt of a kidney transplant.METHODS AND FINDINGS: MEDLINE, PsycINFO, and CINAHL were searched for English-language cross-sectional/longitudinal studies reporting prevalence and/or severity of symptoms and/or HRQOL in CKD, published between January 2000 and September 2021, including adult patients with CKD, and measuring symptom prevalence/severity and/or HRQOL using a patient-reported outcome measure (PROM). Random effects meta-analyses were used to pool data, stratified by CKD group: not on RRT, receiving dialysis, or in receipt of a kidney transplant. Methodological quality of included studies was assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Studies Reporting Prevalence Data, and an exploration of publication bias performed. The search identified 1,529 studies, of which 449, with 199,147 participants from 62 countries, were included in the analysis. Studies used 67 different symptom and HRQOL outcome measures, which provided data on 68 reported symptoms. Random effects meta-analyses highlighted the considerable symptom and HRQOL burden associated with CKD, with fatigue particularly prevalent, both in patients not on RRT (14 studies, 4,139 participants: 70%, 95% CI 60%-79%) and those receiving dialysis (21 studies, 2,943 participants: 70%, 95% CI 64%-76%). A number of symptoms were significantly (p < 0.05 after adjustment for multiple testing) less prevalent and/or less severe within the post-transplantation population, which may suggest attribution to CKD (fatigue, depression, itching, poor mobility, poor sleep, and dry mouth). Quality of life was commonly lower in patients on dialysis (36-Item Short Form Health Survey [SF-36] Mental Component Summary [MCS] 45.7 [95% CI 45.5-45.8]; SF-36 Physical Component Summary [PCS] 35.5 [95% CI 35.3-35.6]; 91 studies, 32,105 participants for MCS and PCS) than in other CKD populations (patients not on RRT: SF-36 MCS 66.6 [95% CI 66.5-66.6], p = 0.002; PCS 66.3 [95% CI 66.2-66.4], p = 0.002; 39 studies, 24,600 participants; transplant: MCS 50.0 [95% CI 49.9-50.1], p = 0.002; PCS 48.0 [95% CI 47.9-48.1], p = 0.002; 39 studies, 9,664 participants). Limitations of the analysis are the relatively few studies contributing to symptom severity estimates and inconsistent use of PROMs (different measures and time points) across the included literature, which hindered interpretation.CONCLUSIONS: The main findings highlight the considerable symptom and HRQOL burden associated with CKD. The synthesis provides a detailed overview of the symptom/HRQOL profile across clinical groups, which may support healthcare professionals when discussing, measuring, and managing the potential treatment burden associated with CKD.PROTOCOL REGISTRATION: PROSPERO CRD42020164737.</p
Maximally-localized generalized Wannier functions for composite energy bands
We discuss a method for determining the optimally-localized set of
generalized Wannier functions associated with a set of Bloch bands in a
crystalline solid. By ``generalized Wannier functions'' we mean a set of
localized orthonormal orbitals spanning the same space as the specified set of
Bloch bands. Although we minimize a functional that represents the total spread
sum_n [ _n - _n^2 ] of the Wannier functions in real space, our method
proceeds directly from the Bloch functions as represented on a mesh of
k-points, and carries out the minimization in a space of unitary matrices
U_mn^k describing the rotation among the Bloch bands at each k-point. The
method is thus suitable for use in connection with conventional
electronic-structure codes. The procedure also returns the total electric
polarization as well as the location of each Wannier center. Sample results for
Si, GaAs, molecular C2H4, and LiCl will be presented.Comment: 22 pages, two-column style with 4 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#nm_wan
Physically attractive faces attract us physically
When interacting with other humans, facial expressions provide valuable information for approach or avoid decisions. Here, we consider facial attractiveness as another important dimension upon which approach-avoidance behaviours may be based. In Experiments 1–3, we measured participants' responses to attractive and unattractive women's faces in an approach-avoidance paradigm in which there was no explicit instruction to evaluate facial attractiveness or any other stimulus attribute. Attractive faces were selected more often, a bias that may be sensitive to response outcomes and was reduced when the faces were inverted. Experiment 4 explored an entirely implicit measure of approach, with participants passively viewing single faces while standing on a force platform. We found greater lean towards attractive faces, with this pattern being most obvious in male participants. Taken together, these results demonstrate that attractiveness activates approach-avoidance tendencies, even in the absence of any task demand
DAZAP1, an RNA-binding protein required for development and spermatogenesis, can regulate mRNA translation
DAZ-associated protein 1 (DAZAP1) is an RNA-binding protein required for normal growth, development, and fertility in mice. However, its molecular functions have not been elucidated. Here we find that Xenopus laevis and human DAZAP1, which are each expressed as short and long forms, act as mRNA-specific activators of translation in a manner that is sensitive to the number of binding sites present within the 3′ UTR. Domain mapping suggests that this conserved function is mainly associated with C-terminal regions of DAZAP1. Interestingly, we find that the expression of xDAZAP1 and its polysome association are developmentally controlled, the latter suggesting that the translational activator function of DAZAP1 is regulated. However, ERK phosphorylation of DAZAP1, which can alter protein interactions with its C terminus, does not play a role in regulating its ability to participate in translational complexes. Since relatively few mRNA-specific activators have been identified, we explored the mechanism by which DAZAP1 activates translation. By utilizing reporter mRNAs with internal ribosome entry sites, we establish that DAZAP1 stimulates translation initiation. Importantly, this activity is not dependent on the recognition of the 5′ cap by initiation factors, showing that it functions downstream from this frequently regulated event, but is modulated by changes in the adenylation status of mRNAs. This suggests a function in the formation of “end-to-end” complexes, which are important for efficient initiation, which we show to be independent of a direct interaction with the bridging protein eIF4G
- …