5,977 research outputs found

    High-order, Dispersionless "Fast-Hybrid" Wave Equation Solver. Part I: O(1)\mathcal{O}(1) Sampling Cost via Incident-Field Windowing and Recentering

    Get PDF
    This paper proposes a frequency/time hybrid integral-equation method for the time dependent wave equation in two and three-dimensional spatial domains. Relying on Fourier Transformation in time, the method utilizes a fixed (time-independent) number of frequency-domain integral-equation solutions to evaluate, with superalgebraically-small errors, time domain solutions for arbitrarily long times. The approach relies on two main elements, namely, 1) A smooth time-windowing methodology that enables accurate band-limited representations for arbitrarily-long time signals, and 2) A novel Fourier transform approach which, in a time-parallel manner and without causing spurious periodicity effects, delivers numerically dispersionless spectrally-accurate solutions. A similar hybrid technique can be obtained on the basis of Laplace transforms instead of Fourier transforms, but we do not consider the Laplace-based method in the present contribution. The algorithm can handle dispersive media, it can tackle complex physical structures, it enables parallelization in time in a straightforward manner, and it allows for time leaping---that is, solution sampling at any given time TT at O(1)\mathcal{O}(1)-bounded sampling cost, for arbitrarily large values of TT, and without requirement of evaluation of the solution at intermediate times. The proposed frequency-time hybridization strategy, which generalizes to any linear partial differential equation in the time domain for which frequency-domain solutions can be obtained (including e.g. the time-domain Maxwell equations), and which is applicable in a wide range of scientific and engineering contexts, provides significant advantages over other available alternatives such as volumetric discretization, time-domain integral equations, and convolution-quadrature approaches.Comment: 33 pages, 8 figures, revised and extended manuscript (and now including direct comparisons to existing CQ and TDIE solver implementations) (Part I of II

    Arbitration Clauses in Retainer Agreements: A Lawyer\u27s License to Exploit the Client - Haynes v. Kuder

    Get PDF
    An attorney is in an influential and superior position to the client when negotiating fee contracts. Because of this position, an attorney has the opportunity to exploit his or her client. Consequently, courts view agreements between a lawyer and client rather suspiciously and apply a higher standard to these agreements. Furthermore, a lawyer is subject to ethical rules which require a lawyer to meet certain duties, including the duty to inform the client about matters regarding the representation! Because of the higher obligations imposed on an attorney when dealing with a client, any benefit of the doubt should go to the client in matters such as whether a claim is covered by an arbitration clause or whether an attorney fully explained the implications of an arbitration clause

    Development of a Software Tool to Automate ADCO Flight Controller Console Planning Tasks

    Get PDF
    This independent study project covers the development of the International Space Station (ISS) Attitude Determination and Control Officer (ADCO) Planning Exchange APEX Tool. The primary goal of the tool is to streamline existing manual and time-intensive planning tools into a more automated, user-friendly application that interfaces with existing products and allows the ADCO to produce accurate products and timelines more effectively. This paper will survey the current ISS attitude planning process and its associated requirements, goals, documentation and software tools and how a software tool could simplify and automate many of the planning actions which occur at the ADCO console. The project will be covered from inception through the initial prototype delivery in November 2011 and will include development of design requirements and software as well as design verification and testing

    The Solar Test of the Equivalence Principle

    Get PDF
    The Earth, Mars, Sun, Jupiter system allows for a sensitive test of the strong equivalence principle (SEP) which is qualitatively different from that provided by Lunar Laser Ranging. Using analytic and numerical methods we demonstrate that Earth-Mars ranging can provide a useful estimate of the SEP parameter η\eta. Two estimates of the predicted accuracy are derived and quoted, one based on conventional covariance analysis, and another (called ``modified worst case'' analysis) which assumes that systematic errors dominate the experiment. If future Mars missions provide ranging measurements with an accuracy of σ\sigma meters, after ten years of ranging the expected accuracy for the SEP parameter η\eta will be of order (112)×104σ(1-12)\times 10^{-4}\sigma. These ranging measurements will also provide the most accurate determination of the mass of Jupiter, independent of the SEP effect test.Comment: 10 pages; LaTeX; three figures upon reques

    An alternate method for achieving temperature control in the -130 C to 75 C range

    Get PDF
    Thermal vacuum testing often requires temperature control of chamber shrouds and heat exchangers within the -130 C to 75 C range. There are two conventional methods which are normally employed to achieve control through this intermediate temperature range: (1) single-pass flow where control is achieved by alternately pulsing hot gaseous nitrogen (GN2) and cold LN2 into the feed line to yield the setpoint temperature; and (2) closed-loop circulation where control is achieved by either electrically heating or LN2 cooling the circulating GN2 to yield the setpoint temperature. A third method, using a mass flow ratio controller along with modulating control valves on GN2 and LN2 lines, provides excellent control but equipment for this method is expensive and cost-prohibitive for all but long-term continuous processes. The single-pass method provides marginal control and can result in unexpected overcooling of the test article from even a short pulse of LN2. The closed-loop circulation method provides excellent control but requires an expensive blower capable of operating at elevated pressures and cryogenic temperatures. Where precise control is needed (plus or minus 2 C), single-pass flow systems typically have not provided the precision required, primarily because of overcooling temperature excursions. Where several individual circuits are to be controlled at different temperatures, the use of expensive cryogenic blowers for each circuit is also cost-prohibitive, especially for short duration of one-of-a-kind tests. At JPL, a variant of the single-pass method was developed that was shown to provide precise temperature control in the -130 C to 75 C range while exhibiting minimal setpoint overshoot during temperature transitions. This alternate method uses a commercially available temperature controller along with a GN2/LN2 mixer to dampen the amplitude of cold temperature spikes caused by LN2 pulsing. The design of the GN2/LN2 mixer, the overall control system configuration, the operational procedure, and the prototype system test results are described
    corecore