1,944 research outputs found

    Porosity Study of Hybrid Silica Mesostructure in Aluminium Oxide Membrane Columnar by Cyclic Voltammetry Method

    Get PDF
    Silica mesostructure has been grown within with a porous aluminium oxide membrane columnar material (hybrid-AOM). This was prepared using a sol-gel technique with Pluronic P123 triblock copolymer as the structure-directing agent and tetraethyl orthosilicate as the inorganic source. The porosity of the hybrid-AOM after ethanol extraction was calculated from the cyclic voltammetry response of a neutral probe (FcMeOH), using Randles-SevÄik equation

    Adaptive Mesh Refinement for Characteristic Grids

    Full text link
    I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius & Lehner (J. Comp. Phys. 198 (2004), 10), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in 2-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null \emph{slices}. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both 2nd and 4th order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.Comment: 37 pages, 15 figures (40 eps figure files, 8 of them color; all are viewable ok in black-and-white), 1 mpeg movie, uses Springer-Verlag svjour3 document class, includes C++ source code. Changes from v1: revised in response to referee comments: many references added, new figure added to better explain the algorithm, other small changes, C++ code updated to latest versio

    Condensate Heating by Atomic Losses

    Full text link
    Atomic Bose-Einstein condensate is heated by atomic losses. Predicted depletion ranges from 1% for a uniform 3D condensate to around 10% for a quasi-1D condensate in a harmonic trap.Comment: 4 pages in RevTex, 1 eps figur

    An electromagnetic forcing device

    Full text link
    The paper describes the drawbacks of an electromagnetic forcing device, of the type commonly used to study forced vibration of structures, and presents details of a feedback control system designed to overcome them. The work described was initiated when attempting to generate sinusoidal forcing in a nonlinear beam-vibration study. Magnetic-material nonlinearities and spatial inhomogenieties in the magnetic field led to unwanted harmonics in the force the beam experienced, and feedback was used to reduce these effects. A brief description of the principles of feedback control is presented and the problems encountered in applying the concepts to the electromagnetic forcing device are discussed. Details of the system, its problems, operating characteristics and limitations are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43929/1/11340_2006_Article_BF02324136.pd

    On the transverse mode of an atom laser

    Full text link
    The transverse mode of an atom laser beam that is outcoupled from a Bose-Einstein condensate is investigated and is found to be strongly determined by the mean--field interaction of the laser beam with the condensate. Since for repulsive interactions the geometry of the coupling scheme resembles an interferometer in momentum space, the beam is found show filamentation. Observation of this effect would prove the transverse coherence of an atom laser beam.Comment: 4 pages, 4 figure

    Generalized harmonic formulation in spherical symmetry

    Get PDF
    In this pedagogically structured article, we describe a generalized harmonic formulation of the Einstein equations in spherical symmetry which is regular at the origin. The generalized harmonic approach has attracted significant attention in numerical relativity over the past few years, especially as applied to the problem of binary inspiral and merger. A key issue when using the technique is the choice of the gauge source functions, and recent work has provided several prescriptions for gauge drivers designed to evolve these functions in a controlled way. We numerically investigate the parameter spaces of some of these drivers in the context of fully non-linear collapse of a real, massless scalar field, and determine nearly optimal parameter settings for specific situations. Surprisingly, we find that many of the drivers that perform well in 3+1 calculations that use Cartesian coordinates, are considerably less effective in spherical symmetry, where some of them are, in fact, unstable.Comment: 47 pages, 15 figures. v2: Minor corrections, including 2 added references; journal version

    Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra

    Full text link
    A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure

    An ansatz for the nonlinear Demkov-Kunike problem for cold molecule formation

    Full text link
    We study nonlinear mean-field dynamics of ultracold molecule formation in the case when the external field configuration is defined by the level-crossing Demkov-Kunike model, characterized by a bell-shaped coupling and finite variation of the detuning. Analyzing the fast sweep rate regime of the strong interaction limit, which models a situation when the peak value of the coupling is large enough and the resonance crossing is sufficiently fast, we construct a highly accurate ansatz to describe the temporal dynamics of the molecule formation in the mentioned interaction regime. The absolute error of the constructed approximation is less than 3*10^-6 for the final transition probability while at certain time points it might increase up to 10^-3. Examining the role of the different terms in the constructed approximation, we prove that in the fast sweep rate regime of the strong interaction limit the temporal dynamics of the atom-molecule conversion effectively consists of the process of resonance crossing, which is governed by a nonlinear equation, followed by atom-molecular coherent oscillations which are basically described by a solution of the linear problem, associated with the considered nonlinear one.Comment: Accepted for publication in J. Contemp. Phys. (Armenian National Academy of Sciences) 8 pages, 4 figure

    Tracking Black Holes in Numerical Relativity

    Full text link
    This work addresses and solves the problem of generically tracking black hole event horizons in computational simulation of black hole interactions. Solutions of the hyperbolic eikonal equation, solved on a curved spacetime manifold containing black hole sources, are employed in development of a robust tracking method capable of continuously monitoring arbitrary changes of topology in the event horizon, as well as arbitrary numbers of gravitational sources. The method makes use of continuous families of level set viscosity solutions of the eikonal equation with identification of the black hole event horizon obtained by the signature feature of discontinuity formation in the eikonal's solution. The method is employed in the analysis of the event horizon for the asymmetric merger in a binary black hole system. In this first such three dimensional analysis, we establish both qualitative and quantitative physics for the asymmetric collision; including: 1. Bounds on the topology of the throat connecting the holes following merger, 2. Time of merger, and 3. Continuous accounting for the surface of section areas of the black hole sources.Comment: 14 pages, 16 figure
    • …
    corecore