755 research outputs found

    Lower limb stiffness estimation during running: the effect of using kinematic constraints in muscle force optimization algorithms

    Get PDF
    The focus of this paper is on the effect of muscle force optimization algorithms on the human lower limb stiffness estimation. By using a forward dynamic neuromusculoskeletal model coupled with a muscle short-range stiffness model we computed the human joint stiffness of the lower limb during running. The joint stiffness values are calculated using two different muscle force optimization procedures, namely: Toque-based and Torque/Kinematic-based algorithm. A comparison between the processed EMG signal and the corresponding estimated muscle forces with the two optimization algorithms is provided. We found that the two stiffness estimates are strongly influenced by the adopted algorithm. We observed different magnitude and timing of both the estimated muscle forces and joint stiffness time profile with respect to each gait phase, as function of the optimization algorithm used

    Spin structure and longitudinal polarization of hyperon in e+e- annihilation at high energies

    Get PDF
    Longitudinal polarizations of different kinds of hyperons produced in e+e- annihilation at LEP I and LEP II energies in different event samples are calculated using two different pictures for the spin structure of hyperon: that drawn from polarized deep inelastic lepton-nucleon scattering data or that using SU(6) symmetric wave functions. The result shows that measurements of such polarizations should provide useful information to the question of which picture is more suitable in describing the spin effects in the fragmentation processes.Comment: 26 pages with 10 figures. Submitted to Phys. Rev.

    The Isospin Makeup of the Giant Resonances from (p,n) Reaction Studies at Intermediate Energies

    Get PDF
    This work was supported by National Science Foundation Grant PHY 75-00289 and Indiana Universit

    Effective action approach and Carlson-Goldman mode in d-wave superconductors

    Full text link
    We theoretically investigate the Carlson-Goldman (CG) mode in two-dimensional clean d-wave superconductors using the effective ``phase only'' action formalism. In conventional s-wave superconductors, it is known that the CG mode is observed as a peak in the structure factor of the pair susceptibility S(Ω,K)S(\Omega, \mathbf{K}) only just below the transition temperature T_c and only in dirty systems. On the other hand, our analytical results support the statement by Y.Ohashi and S.Takada, Phys.Rev.B {\bf 62}, 5971 (2000) that in d-wave superconductors the CG mode can exist in clean systems down to the much lower temperatures, T0.1TcT \approx 0.1 T_c. We also consider the manifestations of the CG mode in the density-density and current-current correlators and discuss the gauge independence of the obtained results.Comment: 23 pages, RevTeX4, 12 EPS figures; final version to appear in PR

    Random-phase approximation study of collective excitations in the Bose-Fermi mixed condensate of alkali-metal gases

    Full text link
    We perform Random Phase Approximation (RPA) study of collective excitations in the bose-fermi mixed degenerate gas of Alkali-metal atoms at T=0. The calculation is done by diagonalization in a model space composed of particle-hole type excitations from the ground state, the latter being obtained from the coupled Gross-Pitaevskii and Thomas-Fermi equations. We investigate strength distributions for different combinations of bose and fermi multipole (LL) operators with L=0,1,2,3L=0,1,2,3. Transition densities and dynamical structure factors are calculated for collective excitations. Comparison with the sum rule prediction for the collective frequency is given. Time dependent behavior of the system after an external impulse is studied.Comment: 28 pages, 13 figures, submitted to Phys. Rev.

    The Extended Coupled Cluster Treatment of Correlations in Quantum Magnets

    Full text link
    The spin-half XXZ model on the linear chain and the square lattice are examined with the extended coupled cluster method (ECCM) of quantum many-body theory. We are able to describe both the Ising-Heisenberg phase and the XY-Heisenberg phase, starting from known wave functions in the Ising limit and at the phase transition point between the XY-Heisenberg and ferromagnetic phases, respectively, and by systematically incorporating correlations on top of them. The ECCM yields good numerical results via a diagrammatic approach, which makes the numerical implementation of higher-order truncation schemes feasible. In particular, the best non-extrapolated coupled cluster result for the sublattice magnetization is obtained, which indicates the employment of an improved wave function. Furthermore, the ECCM finds the expected qualitatively different behaviours of the linear chain and the square lattice cases.Comment: 22 pages, 3 tables, and 15 figure

    Reconciling Neutralino Relic Density with Yukawa Unified Supersymmetric Models

    Full text link
    Supersymmetric grand unified models based on the gauge group SO(10) are especially attractive in light of recent data on neutrino masses. The simplest SO(10) SUSY GUT models predict unification of third generation Yukawa couplings in addition to the usual gauge coupling unification. Recent surveys of Yukawa unified SUSY GUT models predict an inverted scalar mass hierarchy in the spectrum of sparticle masses if the superpotential mu term is positive. In general, such models tend to predict an overabundance of dark matter in the universe. We survey several solutions to the dark matter problem in Yukawa unified supersymmetric models. One solution-- lowering the GUT scale mass value of first and second generation scalars-- leads to u_R and c_R squark masses in the 90-120 GeV regime, which should be accessible to Fermilab Tevatron experiments. We also examine relaxing gaugino mass universality which may solve the relic density problem by having neutralino annihilations via the Z or h resonances, or by having a wino-like LSP.Comment: 21 page file plus 9 figures; updated version to coincide with published versio

    Phylogeography of the pharaoh cuttle Sepia pharaonis based on partial mitochondrial 16S sequence data

    Get PDF
    The pharaoh cuttle Sepia pharaonis Ehrenberg, 1831 (Mollusca: Cephalopoda: Sepiida) is a broadly distributed species of substantial fisheries importance found from east Africa to southern Japan. Little is known about S. pharaonis phylogeography, but evidence from morphology and reproductive biology suggests that Sepia pharaonis is actually a complex of at least three species. To evaluate this possibility, we collected tissue samples from Sepia pharaonis from throughout its range. Phylogenetic analyses of partial mitochondrial 16S sequences from these samples reveal five distinct clades: a Gulf of Aden/Red Sea clade, a northern Australia clade, a Persian Gulf/Arabian Sea clade, a western Pacific clade (Gulf of Thailand and Taiwan) and an India/Andaman Sea clade. Phylogenetic analyses including several Sepia species show that S. pharaonis sensu lato may not be monophyletic. We suggest that "S. pharaonis" may consist of up to five species, but additional data will be required to fully clarify relationships within the S. pharaonis complex

    Theory of Coexistence of Superconductivity and Ferroelectricity : A Dynamical Symmetry Model

    Full text link
    We propose and investigate a model for the coexistence of Superconductivity (SC) and Ferroelectricity (FE) based on the dynamical symmetries su(2)su(2) for the pseudo-spin SC sector, h(4)h(4) for the displaced oscillator FE sector, and su(2)h(4)su(2) \otimes h(4) for the composite system. We assume a minimal symmetry-allowed coupling, and simplify the hamiltonian using a double mean field approximation (DMFA). A variational coherent state (VCS) trial wave-function is used for the ground state: the energy, and the relevant order parameters for SC and FE are obtained. For positive sign of the SC-FE coupling coefficient, a non-zero value of either order parameter can suppress the other (FE polarization suppresses SC and vice versa). This gives some support to "Matthias' Conjecture" [1964], that SC and FE tend to be mutually exclusive. For such a Ferroelectric Superconductor we predict: a) the SC gap Δ\Delta (and TcT_c ) will increase with increasing applied pressure when pressure quenches FE as in many ferroelectrics, and b) the FE polarization will increase with increaesing magnetic field up to HcH_c . The last result is equivalent to the prediction of a new type of Magneto-Electric Effect in a coexistent SC-FE material. Some discussion will be given of the relation of these results to the cuprate superconductors.Comment: 46 page

    Mixed Higgsino Dark Matter from a Large SU(2) Gaugino Mass

    Full text link
    We observe that in SUSY models with non-universal GUT scale gaugino mass parameters, raising the GUT scale SU(2) gaugino mass |M_2| from its unified value results in a smaller value of -m_{H_u}^2 at the weak scale. By the electroweak symmetry breaking conditions, this implies a reduced value of \mu^2 {\it vis \`a vis} models with gaugino mass unification. The lightest neutralino can then be mixed Higgsino dark matter with a relic density in agreement with the measured abundance of cold dark matter (DM). We explore the phenomenology of this high |M_2| DM model. The spectrum is characterized by a very large wino mass and a concomitantly large splitting between left- and right- sfermion masses. In addition, the lighter chargino and three light neutralinos are relatively light with substantial higgsino components. The higgsino content of the LSP implies large rates for direct detection of neutralino dark matter, and enhanced rates for its indirect detection relative to mSUGRA. We find that experiments at the LHC should be able to discover SUSY over the portion of parameter space where m_{\tg} \alt 2350-2750 ~GeV, depending on the squark mass, while a 1 TeV electron-positron collider has a reach comparable to that of the LHC. The dilepton mass spectrum in multi-jet + \ell^+\ell^- + \eslt events at the LHC will likely show more than one mass edge, while its shape should provide indirect evidence for the large higgsino content of the decaying neutralinos.Comment: 36 pages with 26 eps figure
    corecore