688 research outputs found

    Washington Case Law—1955; Constitutional Law

    Get PDF
    The articles of this survey have been prepared for publication as a part of the nominee program for membership on the Washington Law Review. The actual writing was done by the second-year members of the Law Review, under the guidance of the third-year members of the Board. The survey, the third of its kind, does not represent an attempt to discuss every Washington case decided in 1955. Rather, its purpose is to point out those cases which, in the opinion of the Board of Editors, constitute substantial additions to the body of law in Washington. Covers cases on: requirement that justices of peace be attorneys and the Frasch Fish Case

    Lattice Thermal Conductivity of Quartz at High Pressure and Temperature from the Boltzmann Transport Equation

    Get PDF
    The thermal conductivities along the basal and hexagonal directions of α-quartz silica, the low-temperature form of crystalline SiO2, are predicted from the solution of the Boltzmann transport equation combined with the van Beest, Kramer, and van Santen potential for the temperature up to 900 K and the pressure as high as 4 GPa. The thermal conductivities at atmospheric pressure, which show a negative and nonlinear dependence on temperature, are in reasonable agreement with the experimental data. The influence of pressure on thermal conductivity is positive and linear. The pressure (P) and temperature (T) dependences of the thermal conductivity (λ) in basal and hexagonal directions are fitted to a function of the form λ = (b + cP) Ta. The thermal conductivity, influenced by temperature and pressure, is analyzed based on phonon properties, including spectral thermal conductivity, dispersion relation, phonon density of states, phonon lifetime, and phonon probability density distribution function

    Microscopic Electron Models with Exact SO(5) Symmetry

    Full text link
    We construct a class of microscopic electron models with exact SO(5) symmetry between antiferromagnetic and d-wave superconducting ground states. There is an exact one-to-one correspondence between both single-particle and collective excitations in both phases. SO(5) symmetry breaking terms can be introduced and classified according to irreducible representations of the exact SO(5) algebra. The resulting phase diagram and collective modes are identical to that of the SO(5) nonlinear sigma model.Comment: 5 pages, LATEX, 4 eps fig

    Search for the \pi Resonance in Two Particle Tunneling Experiments of YBCO Superconductors

    Full text link
    A recent theory of the resonant neutron scattering peaks in YBCO superconductors predicts the existence of a sharp spin triplet two particle collective mode (the ``\pi resonance") in the normal state. In this paper, we propose an experiment in which the \pi resonance could be probed directly in a two particle tunneling measurement.Comment: 10 pages, LATEX , 3 ps figure

    Non-Fermi Liquid Behavior In Quantum Critical Systems

    Full text link
    The problem of an electron gas interacting via exchanging transverse gauge bosons is studied using the renormalization group method. The long wavelength behavior of the gauge field is shown to be in the Gaussian universality class with a dynamical exponent z=3z=3 in dimensions D≥2D \geq 2. This implies that the gauge coupling constant is exactly marginal. Scattering of the electrons by the gauge mode leads to non-Fermi liquid behavior in D≤3D \leq 3. The asymptotic electron and gauge Green's functions, interaction vertex, specific heat and resistivity are presented.Comment: 9 pages in REVTEX 2.0. Submitted to Phys. Rev. Lett. 3 figures in postscript files can be obtained at [email protected]. The filename is gan.figures.tar.z and it's compressed. You can uncompress it by using commands: "uncompress gan.figures.tar.z" and "tar xvf gan.figures.tar

    Ferromagnetic transition in a double-exchange system

    Full text link
    We study ferromagnetic transition in three-dimensional double-exchange model. The influence of strong spin fluctuations on conduction electrons is described in coherent potential approximation. In the framework of thermodynamic approach we construct for the system "electrons (in a disordered spin configuration) + spins" the Landau functional, from the analysis of which critical temperature of ferromagnetic transition is calculated.Comment: 4 pages, 1 eps figure, LaTeX2e, RevTeX. References added, text change

    Pi excitation of the t-J model

    Full text link
    In this paper, we present analytical and numerical calculations of the pi resonance in the t-J model. We show in detail how the pi resonance in the particle-particle channel couples to and appears in the dynamical spin correlation function in a superconducting state. The contribution of the pi resonance to the spin excitation spectrum can be estimated from general model-independent sum rules, and it agrees with our detailed calculations. The results are in overall agreement with the exact diagonalization studies of the t-J model. Earlier calculations predicted the correct doping dependence of the neutron resonance peak in the YBCO superconductor, and in this paper detailed energy and momentum dependence of the spin correlation function is presented. The microscopic equations of motion obtained within current formalism agree with that of the SO(5) nonlinear sigma model, where the pi resonance is interpreted as a pseudo Goldstone mode of the spontaneous SO(5) symmetry breaking.Comment: 33 pages, LATEX, 14 eps fig

    Ground state of a double-exchange system containing impurities: bounds of ferromagnetism

    Full text link
    We study the boundary between ferromagnetic and non-ferromagnetic ground state of a double-exchange system with quenched disorder for arbitrary relation between Hund exchange coupling and electron band width. The boundary is found both from the solution of the Dynamical Mean Field Approximation equations and from the comparison of the energies of the saturated ferromagnetic and paramagnetic states. Both methods give very similar results. To explain the disappearance of ferromagnetism in part of the parameter space we derive from the double-exchange Hamiltonian with classical localized spins in the limit of large but finite Hund exchange coupling the t−Jt-J model (with classical localized spins).Comment: 5 pages, 8 eps figures, latex; minor typos correcte
    • …
    corecore