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ABSTRACT

The thermal conductivities along the basal and hexagonal directions of α-quartz silica, the low-temperature form of crystalline SiO2, are
predicted from the solution of the Boltzmann transport equation combined with the van Beest, Kramer, and van Santen potential for the
temperature up to 900 K and the pressure as high as 4 GPa. The thermal conductivities at atmospheric pressure, which show a negative and
nonlinear dependence on temperature, are in reasonable agreement with the experimental data. The influence of pressure on thermal con-
ductivity is positive and linear. The pressure (P) and temperature (T) dependences of the thermal conductivity (λ) in basal and hexagonal
directions are fitted to a function of the form λ ¼ (bþ cP)Ta. The thermal conductivity, influenced by temperature and pressure, is analyzed
based on phonon properties, including spectral thermal conductivity, dispersion relation, phonon density of states, phonon lifetime, and
phonon probability density distribution function.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5114992

I. INTRODUCTION

Knowledge of thermal conductivity of Earth’s crust and its
dependence on temperature and pressure is required for quantita-
tive calculations in geology and geophysics problems.1,2 Since the
properties of Earth rocks can be estimated based on those of the
constituent minerals, the thermal conductivities of rock-forming
minerals need to be systematically understood.2

Silicon dioxide is an appropriate prototype for the study of
thermal conductivity, as silicon dioxide and silicate network mate-
rials are the largest component in the Earth’s crust, with more than
60 mass %.3–5 Quartz is the low-temperature polymorph of silica.
Thus, there have been several simulations and experiments focused
on the thermal conductivity of quartz and its temperature depen-
dence on atmospheric pressure.6–9 Nonequilibrium molecular

dynamics (NEMD) has been used to calculate the thermal conduc-
tivity of quartz along the optical ([0001]) axis over a wide tempera-
ture range, with the interatomic interactions described by either the
van Beest, Kramer, and van Santen (BKS) potential7 or the third-
generation Charge Optimized Many-Body (COMB3) potential.10

Equilibrium molecular dynamics based on the Green-Kubo method
has also been applied to predict the thermal conductivity of α-quartz
from 100 K to 350 K.8 All the results above were in good agreement
with the experimental values.6,9 Most of the experimental mea-
surements of thermal conductivity of quartz were performed
decades ago. Steady-state methods were most commonly used to
determine the values in the directions perpendicular and parallel
to the optical axis,11–13 with the widest temperature range being
from 300 K to 1000 K.9
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The only work characterizing the effect of pressure on the
thermal conductivity of silica was an experiment using the steady-
state parallel-plate method on an amorphous sample in the tempera-
ture range from 273 K to 1273 K and at pressures up to 400MPa.14

However, the maximum pressure, 400MPa, is much lower than the
maximum pressure in the crust. The numerous theoretical methods
available to calculate the thermal conductivity can provide an alter-
native to the experimental techniques. The published high-pressure
simulations have focused on another important constituent mineral
of rocks, MgO periclase, at high temperature and pressure.15–17

However, there have not been any simulation studies of the thermal
conductivity of quartz at high pressure.

In this paper, we determine the thermal conductivity of
α-quartz silica as a function of temperature and pressure by solving
the Boltzmann transport equation (BTE), with the interatomic
interactions described by the BKS potential. The temperature range
from 300 K to 900 K and the pressure range from 0 GPa to 4 GPa
are chosen because the temperature and pressure of the crust
increase with depth, reaching the maximum value of 500 °C
(773 K) and 5 GPa at the crust-mantle boundary.18

II. METHODOLOGY

A. Structure

The structure of α-quartz silica is shown in Figs. 1(a)–1(d)
from various perspectives, with the silicon atoms marked in blue
and oxygen atoms in red. The experimental value of the Si–O–Si
bond angle is 143.61°.19 The structure consists of a continuous
framework of corner-sharing SiO4 tetrahedra connected through
oxygen, as depicted in Fig. 1(d). The crystal symmetry of the unit
cell is trigonal, belonging to the P3121 space group. There are 3

silicon atoms and 6 oxygen atoms in the unit cell. The structure of
high-temperature β-quartz is similar, except that the Si–O–Si bond
angle is larger, with the experimental value being around 150°.19

This also has the effect of increasing the overall symmetry: β-quartz
has the same number of atoms in the unit cell and belongs to the
hexagonal system with space group P6222.

For computational convenience, we use an orthorhombic cell
of 18 atoms as shown in Fig. 1(a) rather than the primitive trigonal
unit cell of 9 atoms in our calculations and simulations. The ortho-
rhombic simulation cell is described by the three length parameters
a, b, and c. The basal a lattice parameters are the same in the hex-
agonal and orthorhombic cells, as are the values of c. The lattice
parameter b in the orthorhombic cell is

ffiffiffi
3

p
times larger than in the

hexagonal unit cell.

B. Temperature and pressure dependence of lattice
parameters

The lattice parameters of the orthorhombic cell at various
temperatures and pressures were computed by molecular dynamics
(MD) and the classical BKS interatomic potential, which are used
throughout this work. The details of the BKS potential can be
found in the original BKS reference.20 The influence of potential
cutoff was tested by comparing the thermal conductivity calculated
using 10 Å and 15 Å cutoffs: the difference was less than 1%, so
the original value in reference 10 Å was used in all calculations.
A supercell consisting of 2250 atoms was equilibrated at the
specified temperature and pressure for 200 ps. The results were
averaged over the last 5 ps; 10 independent calculations with
different initial atomic velocity distributions were performed for
each temperature and pressure. The lattice parameters determined
by MD are expected to be more accurate than those determined

FIG. 1. The structure of the trigonal unit cell of α-quartz silica, oxygen atoms in red, silicon atoms in blue, from various perspectives. (a) along the direction parallel to
[0001]. The box of the hexagonal unit cell is shown as a solid line, while the orthorhombic unit cell is outlined by the dashed line. (b) along the direction parallel to [1000],
(c) along the direction parallel to [0100], and (d) perspective view showing the corner-sharing oxygen tetrahedra.
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from lattice dynamics, which offers only an incomplete description
of the anharmonic effects of temperature.

The calculated lattice constants (a and c) and volume are
shown in Fig. 2 as a function of temperature and pressure and
compared with the experimental results.21 Except for the precise
value of the transition temperature, the simulations have a similar
trend as the experiment. However, the cell volume is about 3%
larger than the experiments. The thermal expansion and volume
compression caused by pressure are clearly demonstrated. The dis-
crete jump in lattice parameters between 700 K and 800 K for
0 GPa corresponds to the phase transition from α-quartz to
β-quartz, as verified by an analysis of the radial and angular distri-
bution functions. In particular, the radial distribution functions
show that both second- and third-nearest peaks split, with the
resulting subpeaks emerging above the transition.22 The phase tran-
sition temperature determined from this simulation is 788+12 K at
zero pressure. This compares well with other studies using the BKS
potential, which estimate the transition temperature to be 740 K23

or 900 K.22 The value from our simulation is less than 10% lower
than the experimental value of 845 K (at an atmospheric pressure
of 0.1 MPa).22 Coesite is a high-pressure polymorph of silica and
has been found in metamorphic rocks.24 However, no transition
from α-quartz to coesite has been observed.25

C. Thermal conductivity

The thermal conductivity is calculated from the solution of the
Boltzmann transport equation (BTE) using the PhonTS Package.26

Details of the theory and solution method are described in Ref. 27.
Here, we briefly summarize those aspects salient to this analysis.

The thermal conductivity can be calculated based on Fourier’s
law and the expression for the heat current in terms of the distribu-
tion function f~k,n,

~q ¼ λ∇T ¼
X
~k,n

�hω~k,n~v~k,nf~k,n: (1)

In this equation, ∇T is the temperature gradient; the phonon
branch index n and the phonon wave vector ~k label the phonon
state. ω~k,n is the phonon frequency,~v~k,n is the phonon group velocity,
and f~k,n is the phonon distribution function. The phonon frequencies
~ω~k,n are obtained in the usual manner by diagonalizing the dynami-
cal matrix. The phonon group velocities are the gradients of the
phonon frequencies as a function of the wave vector~k. The probabil-
ity distribution functions f~k,n can be calculated from the Boltzmann
transport equation.

The canonical form of the linearized BTE for phonons is

�~v~k,n �
@f 0~k,n
@T

∇T ¼ 1
kBT

X
~k
0
,n0 ;~k

00
,n00

��
Φ~k,n þΦ~k

0
,n0 � Φ~k

00
,n00

�
Λ
~k
00
,n00

~k,n;~k
0
,n0

þ 1
2

�
Φ~k,n �Φ~k

0
,n0 � Φ~k

00
,n00

�
Λ
~k
0
,n0 ;~k

00
,n00

~k,n;

�
,

(2)

where Λ is the equilibrium transition rate for three-phonon process
and Φ~k,n is a small deviation of the probability distribution function
f~k,n from the equilibrium distribution function f 0~k,n defined as

f~k,n ¼ f 0~k,n �
@f 0~k,n
@(�hω)

Φ~k,n: (3)

In Eq. (2), the left-hand side represents phonon diffusion
induced by the thermal gradient, while the right-hand side represents
the scattering term for the three-phonon processes. Higher order
interactions (i.e., processes involving four or more phonons) are not
considered, though the importance of their effects is assessed below.
The transition rates Λ are proportional to the square of the Fourier
transform of the third derivative of the total potential energy with
respect to the atom positions (third-order force constants). The
detailed formulas and computation method of the transition rates
can be found in Refs. 19 and 20.

FIG. 2. Temperature dependence of lattice constants (a and c) and volume of molecular dynamics simulation in comparison with the experimental results21 (black), for
pressures of 0 GPa (blue), 2 GPa (orange), and 4 GPa (green).
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We use the iterative method to solve the Boltzmann equation
[Eq. (2)], representing the deviation of the distribution function
Φ~k,n as

Φ~k,n ¼ ~F~k,n � ∇T: (4)

Substituting into Eq. (2) yields

~F~k,n ¼�
�hω~k,nf

0
~k,n

�
1þ f 0~k,n

�
~v~k,n

TQ~k,n

þ 1
Q~k,n

X
~k
0
,n0 ;~k

00
,n00

��
~F~k00 ,n00 �~F~k0 ,n0

�
Λ
~k
00
,n00

~k,n;~k
0
,n0

þ 1
2

�
~F~k0 ,n0 þ~F~k00 ,n00

�
Λ
~k
0
,n0 ;~k

00
,n00

~k,n;

�
,

(5)

Q~k,n ¼
X

~k
0
,n0 ;~k

00
,n00

Λ
~k
00
,n00

~k,n;~k
0
,n0
þ 1
2
Λ
~k
0
,n0 ;~k

00
,n00

~k,n;

� �
: (6)

The numerical iteration method is used to solve to self-
consistency,

~Fiþ1
~k,n

¼

~F0
~k,n

þ 1
Q~k,n

X
~k
0
,n0 ;~k

00
,n00

�
~Fi
~k
00
,n00

�~Fi
~k
0
,n0

�
Λ
~k
00
,n00
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00
,n00

~k,n;

� �
:

(7)

With the initial condition

~F0
~k,n

¼ �
�hω~k,nf

0
~k,n

�
1þ f 0~k,n

�
~v~k,n

TQ~k,n

, ~F1
~k,n

¼ 0: (8)

Once j~Fiþ1
~k,n

�~Fi
~k,n
j is below a specified value, the distribution

is considered to be converged. Substituting the definition of ~F~k,n
into Eq. (1), the final formalism of thermal conductivity is

λ ¼ �
ðX

n

�hω~k,n
f 0~k,n

�
1þ f 0~k,n

�
kBT

~v~k,n �~F~k,nd
~k: (9)

Because of numerical limitations, the off diagonal components
of λ are generally nonzero but are much smaller than the diagonal
components.

For the orthorhombic simulation cell, the length b is the largest
and the difference between the other two (a and c) is relatively small;
for example, at 300 K and 0 GPa, a = 4.969 Å, b = 8.607 Å, and
c = 5.446 Å. Therefore, a 11� 7� 11 k-grid is used in the
phonon Brillouin zone, with an additional 10 times denser grid
along the c direction used to obtain better approximations to
the energy and momentum conservation, resulting in improved con-
vergence.26 For the second and third derivatives of the total potential
energy with respect to atom positions, the analytical differentiation
of the BKS potential was used due to the relatively simple expression
of the Buckingham type potential. The convergence of thermal

conductivity as a function of iteration step is shown in Fig. 3. We
found that the differences between the results of one and ten itera-
tions were less than 2.5%; hence just one step for the iteration proce-
dure was used.

III. RESULT AND DISCUSSION

A. Anisotropy of thermal conductivity

The thermal conductivities of α-quartz silica were measured at
atmospheric pressure;6,9 this can be used to validate our calcula-
tions, as shown in Fig. 4. The thermal conductivity tensor of the

FIG. 4. Comparison of the calculated (solid triangles) and experimentally mea-
sured thermal conductivity (Ref. 9, hollow circles; Ref. 6, hollow squares) as a
function of temperature. The results of basal and hexagonal directions are given
in green and red, respectively.

FIG. 3. The convergence of thermal conductivity of α-quartz as a function of
iteration step at 300 K and 1 GPa, normalized to the value after 10 iterations.
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orthorhombic structure is diagonal; thus, it is convenient to speak
of the thermal conductivity along the direction, for which it is
implied that the thermal gradient lies in the same direction as the
thermal current. There are significant differences between the two
experimental determinations of the thermal conductivity along the
hexagonal direction (open red symbols), particularly at low temper-
atures. For thermal conductivity in the basal plane, the two sets of
experiments (open green symbols) agree better. The computed
values of the thermal conductivities (for a pressure of 0 GPa and
over the temperature range of 300–900 K) are in reasonable agree-
ment with the experimental results, both in the numerical values
and their trend with respect to temperature. In general, the com-
puted values are larger than the experimental results. One of the
reasons might be that the calculation model is a perfect crystal
without impurities, which decreases the thermal conductivity of
the experimental samples.28,29 Moreover, radiative heat transfer
may be important at high temperature.9 Its non-negligible contri-
bution to the thermal conductivity might be the reason for the
increase of experimental thermal conductivity at temperature
above 800 K.

Another possible origin of the difference between the experi-
mental and computed values is the limitation of the computa-
tional approach to three-phonon processes. To assess the
contribution of four- and more-phonon processes, which would
further reduce the thermal conductivity, the fourth-order phonon
anharmonicity was analyzed by calculating the residual. The
residual is defined as the difference between the potential energy
and the second-order polynomial fit to the potential as a function

of the atomic displacement perturbation.30 The residual of perturba-
tions along the Si–O bond at 300 K and 0 GPa is shown in Fig. 5(a).
The antisymmetric shape of this means that the fourth-order poten-
tial energy is negligible compared to the third-order term along the
Si–O bond. In contrast, the residual shape perpendicular to the Si–O
bond is W-like in Fig. 5(b), indicating that there is a fourth-order
contribution. However, the magnitude of the deviations is very small,
indicating that these four-phonon processes are small. The factor of
∼100 between the size of the deviations in Figs. 5(a) and 5(b) may
seem surprising. However, in Ref. 25, it was found that the magni-
tude of the residual along the Ge–Ge bond is around 20 times larger
than that perpendicular to the Ge–Ge bond. Our difference for Si–O
is larger, because the bond length of Si–O (1.63 Å) is shorter than
that of Ge–Ge (2.41 Å), while the displacement of atoms is very
similar (maximum 0.3 Å).

The thermal conductivities along the hexagonal axis ([0001])
of α-quartz are larger than along the basal directions ([1000],
[0100]), which is consistent with the characteristics of a positive
uniaxial crystal. From the spectral thermal conductivity of α-quartz
at 300 K and 0 GPa as shown in Fig. 6, we can see that larger con-
ductivity along the hexagonal direction comes largely from the
phonons with frequencies between 2 THz and 7 THz.

B. The effect of temperature on thermal conductivity

In Figs. 7(a) and 7(b), we show the temperature dependence
of the thermal conductivity for three different pressures. For all
pressures, the thermal conductivity decreases with increasing

FIG. 5. Regular residuals of the second polynomial fitting to the potential energy vs the atomic displacement perturbation (a) along and (b) perpendicular to the Si–O
bonds at a temperature of 300 K and a pressure of 0 GPa.
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temperature along both the hexagonal and the basal directions, with
the decrease in the hexagonal direction being larger. As a result, the
ratio of the hexagonal to basal thermal conductivity, i.e., the anisot-
ropy, decreases with increasing temperatures as shown in Fig. 7(c).

C. The effect of pressure on thermal conductivity

In Figs. 8(a) and 8(b), the thermal conductivity is plotted as a
function of pressure at four different temperatures. The effect of

pressure on the thermal conductivity is positive and linear both
along the hexagonal and basal directions, while the effect of tem-
perature is negative and nonlinear as shown in Figs. 7(a) and 7(b).
The pressure also enhances the anisotropy of the thermal conduc-
tivity, as the ratio between the values along two directions increases
in Fig. 8(c). The effect of pressure on anisotropy can be explained
by Young’s modulus, which was calculated using the BKS potential
at 0 K. Young’s modulus in the basal direction is 80.4 GPa and in
the hexagonal direction is 102.4 GPa, both of which are very close
to the experiment values of 79.4 GPa and 102.8 GPa.31 The stiffer
direction was influenced more by pressure.

In Figs. 7(a) and 7(b), the thermal conductivity shows a
power-law dependence on temperature and a linear dependence
on pressure in Figs. 8(a) and 8(b). Therefore, a function of type
λ = C(P)Tα l ¼ C(P)Ta is fitted using the nonlinear least squares
method. The exponent of temperature for the hexagonal direction
is close to −1 for both systems. The function C(P) is approxi-
mately linear in pressure. The detailed parameters are shown
in Table I.

Another prevalent way to present the temperature and
pressure dependence of the thermal conductivity is as
λ = λ0(1 + BP)/(1 + AT). For the basal direction, this formula
yields the reasonable fit of λ0 = 55.43 W/m K, A = 0.02 K−1, and
B = 0.07 (GPa)−1. When we performed the same fit for the
hexagonal direction, physically unreasonable values of the
parameters were obtained. We ascribed this to the extreme sen-
sitivity of the fit to slight variations in the data.

D. Analysis

Figure 9 shows the calculated dispersion relationship and
phonon density of states (DOS) at 0 K and 0 GPa, using the BKS

FIG. 6. Spectral thermal conductivity (solid line) along the hexagonal axis (red)
and in the basal direction (green) and frequency integrated values (dashed
lines) of α-quartz at 300 K and 0 GPa.

FIG. 7. The thermal conductivities of α-quartz silica as a function of temperature at 0 GPa, 2 GPa, and 4 GPa and the ratio of hexagonal to basal direction.
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potential. For frequencies between ∼3 THz and 29 THz, the density
of states is relatively flat, consistent with the rather dense and
uniform phonon dispersion curves. The maximum value of DOS at
33.2 THz is associated with the very flat, high energy bands in the
phonon dispersion curve.

As an evaluation of the quality of the BKS potential, a com-
parison of calculated and experimental dispersion curves32 for the
Γ-K direction is shown in Fig. 9. In our results, the low-frequency
and high-frequency portions of the dispersion curves are close to
the experimental results. The discrepancy of the middle-frequency
range indicates the limitations of the BKS potential.

Generally, the effect of temperature and pressure on DOS is a
shift with respect to frequency, presented as peaks and valleys alter-
natively appear in the DOS difference in Fig. 10. Figure 10(a)
shows the DOS from Fig. 9 and defines the baseline against which
to compare the effects of temperature and pressure. Figure 10(b)
shows the change in the DOS as the temperature increases from
300 K to 900 K. The expansion of the lattice associated with
increasing temperature has the general effect of softening the
phonon modes. Thus, the first peak of DOS difference in Fig. 10(b)
is upward, indicating added DOS at a frequency, which is lower
than that of the first peak of DOS at 300 K in Fig. 10(a);

contrariwise, the effect of pressure is to decrease the lattice parame-
ter and increase the phonon frequencies; thus, the first peak in
Fig. 10(c) is downward. With higher temperature of 900 K and
pressure of 4 GPa, the volume of the unit cell is still compressed
compared with a temperature of 300 K and a pressure of 0 GPa.
Thus, again the first peak is downward. The strong upward and
downward peaks at ∼33 THz correspond to small changes in the
frequency of the flat high-frequency band. The overall effect of
both temperature and pressure is thus rather small. That is, we
cannot expect these changes to the harmonic behavior of the
phonons to explain the significant temperature and pressure depen-
dence of the thermal conductivity.

The phonon lifetimes and the averaged values as a function
of frequency are shown in Fig. 11 for temperatures of 300 K and
900 K and pressures of 0 GPa and 4 GPa. There is a dramatic
initial decrease of the phonon lifetime with frequency, followed
by a fluctuation within a narrow range, and then a small increase
after 20 THz. As we would expect, the effect of temperature and
pressure on phonon lifetime is similar to the effect on the
thermal conductivity itself. Specifically, the phonon lifetimes
decrease with increasing temperature [Fig. 11(b)] and increase
with increasing pressure [Fig. 11(c)]. Comparing Fig. 11(a) with
Fig. 6, the lifetime of the high flatband is in the same range with
that of frequency from 5 THz to 10 THz. However, the contribu-
tion to the thermal conductivity is smaller because of the much
lower phonon velocity. The phonon lifetime is longest when the
thermal conductivity is the highest at 300 K and 4 GPa, especially
in the frequency range from 0 THz to 10 THz. Under the condition
of Fig. 11(d), the volume is compressed, compared to under the con-
dition of Fig. 11(a); however, the phonon lifetime is lower. This arises
from the combined effect of temperature and pressure, which changes

FIG. 8. The thermal conductivities of α-quartz silica as a function of pressure at 300 K, 500 K, 700 K, and 900 K and the ratio of hexagonal to basal direction.

TABLE I. The fitting parameters of thermal conductivity as a function of temperature
and pressure of type λ = C(P)Ta.

Direction C(P) a

Hexagonal direction (5295.4 ± 109.4) + (938.5 ± 44.7)P −1.07
Basal direction (1430.8 ± 17.8) + (95.0 ± 7.26)P −0.91
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not only the average density but also the amplitude of thermal
vibrations.

The normalized spectral thermal conductivity is shown in
Fig. 12. Comparing Fig. 12(b) with Fig. 12(a), we can see that the

phonons in 2–7 THz range frequency are the dominant contribu-
tors to the thermal conductivity. Moreover, the contribution from
phonon with larger frequencies (between 18 THz and 26 THz)
increases as the temperature increases. The same conclusion can be

FIG. 9. The calculated dispersion rela-
tionship and phonon density of states
of α-quartz. The closed circles indicate
the experimental frequencies α-quartz
at 0 K for the Γ-K direction.32

FIG. 10. (a) Phonon density of states
for a temperature of 300 K and a pres-
sure of 0 GPa. (b) Difference in DOS
for a temperature of 900 K and a pres-
sure of 0 GPa. (c) Difference in DOS
for a temperature of 300 K and a pres-
sure of 4 GPa. (d) Difference in DOS
for a temperature of 900 K and a pres-
sure of 4 GPa.
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FIG. 11. Phonon lifetimes (blue dots)
and the averaged values (red line) as
a function of frequency for different
temperatures and pressures.

FIG. 12. The normalized spectral
thermal conductivity (solid) and inte-
grated values (dotted) of the basal
(green) and hexagonal (red) directions.
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drawn when comparing Fig. 12(d) with Fig. 12(c). For the effect of
pressure on the basal thermal conductivity, the contribution from
phonons with frequency between 10 THz and 16 THz decreases
with increasing pressure. The effect of pressure on the thermal con-
ductivity normal to the basal direction is not so clear but is consis-
tent with the effect of pressure being weaker.

This analysis also allows the contribution of the various
branches of the phonon dispersion curves to the thermal conduc-
tivity to be determined. These are shown in Tables II and III.
The dispersion curves are divided into three groups: acoustic
branches, middle-frequency branches (between acoustic branches
and 30 THz), and high-frequency branches (flatbands above
30 THz). The contribution of the acoustic branches to the
thermal conductivity increases with higher pressure or lower
temperature. The trend of contribution of middle-frequency
branches is opposite. The flat high-frequency branches contribute
little to the thermal conductivity because their velocity is very
low. The acoustic branches contribute a higher percentage to
the thermal conductivity in the hexagonal direction than in the
basal direction.

IV. CONCLUSIONS

By solving the Boltzmann transport equation with interatomic
interactions described by the BKS potential, we have elucidated the
effects of temperature and pressure on the thermal conductivity of
α-quartz. The results of the thermal conductivities at atmospheric
pressure are in reasonable agreement with the experimental results,
both for the anisotropy of basal and hexagonal directions, and their
trends with respect to temperature. Temperature has a negative
effect on thermal conductivity and reduces the difference between
the basal and hexagonal directions, whereas pressure has a positive
effect and enhances the anisotropy. The changes in the harmonic
lattice dynamics due to the variation of temperature and pressure,
such as phonon density of states, have little effect. Rather, the
anharmonic lattice effects, such as the perturbation of the phonon
distribution function, determine the heat conduction along both
the basal and hexagonal directions. The contribution of the acoustic
branches to the thermal conductivity increases in both directions,
as temperature decreases or pressure increases. The contribution of
phonon branches in midrange frequencies is nearly unchanged in
the hexagonal direction and increases with increasing temperature
and decreasing pressure in the basal direction.
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