37,568 research outputs found

    Large-N expansion based on the Hubbard operator path integral representation and its application to the t-J model II. The case for finite JJ

    Full text link
    We have introduced a new perturbative approach for t−J−Vt-J-V model where Hubbard operators are treated as fundamental objects. Using our vertices and propagators we have developed a controllable large-N expansion to calculate different correlation functions. We have investigated charge density-density response and the phase diagram of the model. The charge correlations functions are not very sensitive to the value of JJ and they show collective peaks (or zero sound) which are more pronounced when they are well separated (in energy) from the particle-hole continuum. For a given JJ a Fermi liquid state is found to be stable for doping δ\delta larger than a critical doping δc\delta_c. δc\delta_c decreases with decreasing JJ. For the physical region of the parameters and, for δ<δc\delta< \delta_c, the system enters in an incommensurate flux or DDW phase. The inclusion of the nearest-neighbors Coulomb repulsion VV leads to a CDW phase when VV is larger than a critical value VcV_c. The dependence of VcV_c with δ\delta and JJ is shown. We have compared the results with other ones in the literature.Comment: 10 pages, 8 figures, to appear in Phys. Rev.

    Increasing the coherence time of Bose-Einstein-condensate interferometers with optical control of dynamics

    Get PDF
    Atom interferometers using Bose-Einstein condensate that is confined in a waveguide and manipulated by optical pulses have been limited by their short coherence times. We present a theoretical model that offers a physically simple explanation for the loss of contrast and propose the method for increasing the fringe contrast by recombining the atoms at a different time. A simple, quantitatively accurate, analytical expression for the optimized recombination time is presented and used to place limits on the physical parameters for which the contrast may be recovered.Comment: 34 Pages, 8 Figure

    Undamped nonequilibrium dynamics of a nondegenerate Bose gas in a 3D isotropic trap

    Full text link
    We investigate anomalous damping of the monopole mode of a non-degenerate 3D Bose gas under isotropic harmonic confinement as recently reported by the JILA TOP trap experiment [D. S. Lob- ser, A. E. S. Barentine, E. A. Cornell, and H. J. Lewandowski (in preparation)]. Given a realistic confining potential, we develop a model for studying collective modes that includes the effects of anharmonic corrections to a harmonic potential. By studying the influence of these trap anharmonicities throughout a range of temperatures and collisional regimes, we find that the damping is caused by the joint mechanisms of dephasing and collisional relaxation. Furthermore, the model is complimented by Monte Carlo simulations which are in fair agreement with data from the JILA experiment.Comment: 11 pages, 6 figure

    Phase separation in a boson-fermion mixture of Lithium atoms

    Full text link
    We use a semiclassical three-fluid model to analyze the conditions for spatial phase separation in a mixture of fermionic Li-6 and a (stable) Bose-Einstein condensate of Li-7 atoms under cylindrical harmonic confinement, both at zero and finite temperature. We show that with the parameters of the Paris experiment [F. Schrek et al., Phys. Rev. Lett. 87 080403 (2001)] an increase of the boson-fermion scattering length by a factor five would be sufficient to enter the phase-separated regime. We give examples of configurations for the density profiles in phase separation and estimate that the transition should persist at temperatures typical of current experiments. For higher values of the boson-fermion coupling we also find a new phase separation between the fermions and the bosonic thermal cloud at finite temperature.Comment: 8 pages, 4 figures, new version of Fig. 4 and typos correcte

    A Compact Microchip-Based Atomic Clock Based on Ultracold Trapped Rb Atoms

    Full text link
    We propose a compact atomic clock based on ultracold Rb atoms that are magnetically trapped near the surface of an atom microchip. An interrogation scheme that combines electromagnetically-induced transparency (EIT) with Ramsey's method of separated oscillatory fields can achieve atomic shot-noise level performance of 10^{-13}/sqrt(tau) for 10^6 atoms. The EIT signal can be detected with a heterodyne technique that provides noiseless gain; with this technique the optical phase shift of a 100 pW probe beam can be detected at the photon shot-noise level. Numerical calculations of the density matrix equations are used to identify realistic operating parameters at which AC Stark shifts are eliminated. By considering fluctuations in these parameters, we estimate that AC Stark shifts can be canceled to a level better than 2*10^{-14}. An overview of the apparatus is presented with estimates of duty cycle and power consumption.Comment: 15 pages, 11 figures, 5 table
    • …
    corecore