19,742 research outputs found
Suppression of Dephasing of Optically Trapped Atoms
Ultra-cold atoms trapped in an optical dipole trap and prepared in a coherent
superposition of their hyperfine ground states, decohere as they interact with
their environment. We demonstrate than the loss in coherence in an "echo"
experiment, which is caused by mechanisms such as Rayleigh scattering, can be
suppressed by the use of a new pulse sequence. We also show that the coherence
time is then limited by mixing to other vibrational levels in the trap and by
the finite lifetime of the internal quantum states of the atoms
Chiral Susceptibility in Hard Thermal Loop Approximation
The static and dynamic chiral susceptibilities in the quark-gluon plasma are
calculated within the lowest order perturbative QCD at finite temperature and
the Hard Thermal Loop resummation technique using an effective quark
propagator. After regularisation of ultraviolet divergences, the Hard Thermal
Loop results are compared to QCD lattice simulations.Comment: 12 pages, 4 figures, revised version, to be published in Phys. Rev.
Na2V3O7, a frustrated nanotubular system with spin-1/2 diamond rings
Following the recent discussion on the puzzling nature of the interactions in
the nanotubular system Na2V3O7, we present a detailed ab-initio microscopic
analysis of its electronic and magnetic properties. By means of a non-trivial
downfolding study we propose an effective model in terms of tubes of nine-site
rings with the geometry of a spin-diamond necklace with frustrated inter-ring
interactions. We show that this model provides a quantitative account of the
observed magnetic behavior.Comment: 5 pages, 5 figures. Phys. Rev. Lett. (in press
New model for surface fracture induced by dynamical stress
We introduce a model where an isotropic, dynamically-imposed stress induces
fracture in a thin film. Using molecular dynamics simulations, we study how the
integrated fragment distribution function depends on the rate of change and
magnitude of the imposed stress, as well as on temperature. A mean-field
argument shows that the system becomes unstable for a critical value of the
stress. We find a striking invariance of the distribution of fragments for
fixed ratio of temperature and rate of change of the stress; the interval over
which this invariance holds is determined by the force fluctuations at the
critical value of the stress.Comment: Revtex, 4 pages, 4 figures available upon reques
Electronic Structure of Ladder Cuprates
We study the electronic structure of the ladder compounds (SrCa)CuO 14-24-41
and SrCuO 123. LDA calculations for both give similar Cu 3d-bands near the
Fermi energy. The hopping parameters estimated by fitting LDA energy bands show
a strong anisotropy between the t_perp t_par intra-ladder hopping and small
inter-ladder hopping. A downfolding method shows that this anisotropy arises
from the ladder structure.The conductivity perpendicular to the ladders is
computed assuming incoherent tunneling giving a value close to experiment.Comment: 5 pages, 3 figure
Mass Expansions of Screened Perturbation Theory
The thermodynamics of massless phi^4-theory is studied within screened
perturbation theory (SPT). In this method the perturbative expansion is
reorganized by adding and subtracting a mass term in the Lagrangian. We
analytically calculate the pressure and entropy to three-loop order and the
screening mass to two-loop order, expanding in powers of m/T. The truncated
m/T-expansion results are compared with numerical SPT results for the pressure,
entropy and screening mass which are accurate to all orders in m/T. It is shown
that the m/T-expansion converges quickly and provides an accurate description
of the thermodynamic functions for large values of the coupling constant.Comment: 22 pages, 10 figure
Hyperfine Spectroscopy of Optically Trapped Atoms
We perform spectroscopy on the hyperfine splitting of Rb atoms trapped
in far-off-resonance optical traps. The existence of a spatially dependent
shift in the energy levels is shown to induce an inherent dephasing effect,
which causes a broadening of the spectroscopic line and hence an inhomogeneous
loss of atomic coherence at a much faster rate than the homogeneous one caused
by spontaneous photon scattering. We present here a number of approaches for
reducing this inhomogeneous broadening, based on trap geometry, additional
laser fields, and novel microwave pulse sequences. We then show how hyperfine
spectroscopy can be used to study quantum dynamics of optically trapped atoms.Comment: Review/Tutoria
Microstructure Effects on Daily Return Volatility in Financial Markets
We simulate a series of daily returns from intraday price movements initiated
by microstructure elements. Significant evidence is found that daily returns
and daily return volatility exhibit first order autocorrelation, but trading
volume and daily return volatility are not correlated, while intraday
volatility is. We also consider GARCH effects in daily return series and show
that estimates using daily returns are biased from the influence of the level
of prices. Using daily price changes instead, we find evidence of a significant
GARCH component. These results suggest that microstructure elements have a
considerable influence on the return generating process.Comment: 15 pages, as presented at the Complexity Workshop in Aix-en-Provenc
- …