229 research outputs found
Extreme Electron-Phonon Coupling in Boron-based Layered Superconductors
The phonon-mode decomposition of the electron-phonon coupling in the
MgB2-like system Li_{1-x}BC is explored using first principles calculations. It
is found that the high temperature superconductivity of such systems results
from extremely strong coupling to only ~2% of the phonon modes. Novel
characteristics of E_2g branches include (1) ``mode lambda'' values of 25 and
greater compared to a mean of for other modes, (2) a precipitous
Kohn anomaly, and (3) E_2g phonon linewidths within a factor of ~2 of the
frequency itself, indicating impending breakdown of linear electron-phonon
theory. This behavior in borne out by recent inelastic x-ray scattering studies
of MgB2 by Shukla et al.Comment: 4 two-column pages, 4 figures. Equations simplified. Figure 4
changed. Comparison with new data include
Pressure-dependence of electron-phonon coupling and the superconducting phase in hcp Fe - a linear response study
A recent experiment by Shimizu et al. has provided evidence of a
superconducting phase in hcp Fe under pressure. To study the
pressure-dependence of this superconducting phase we have calculated the phonon
frequencies and the electron-phonon coupling in hcp Fe as a function of the
lattice parameter, using the linear response (LR) scheme and the full potential
linear muffin-tin orbital (FP-LMTO) method. Calculated phonon spectra and the
Eliashberg functions indicate that conventional s-wave
electron-phonon coupling can definitely account for the appearance of the
superconducting phase in hcp Fe. However, the observed change in the transition
temperature with increasing pressure is far too rapid compared with the
calculated results. For comparison with the linear response results, we have
computed the electron-phonon coupling also by using the rigid muffin-tin (RMT)
approximation. From both the LR and the RMT results it appears that
electron-phonon interaction alone cannot explain the small range of volume over
which superconductivity is observed. It is shown that
ferromagnetic/antiferromagnetic spin fluctuations as well as scattering from
magnetic impurities (spin-ordered clusters) can account for the observed values
of the transition temperatures but cannot substantially improve the agreeemnt
between the calculated and observed presure/volume range of the superconducting
phase. A simplified treatment of p-wave pairing leads to extremely small ( K) transition temperatures. Thus our calculations seem to rule out
both - and - wave superconductivity in hcp Fe.Comment: 12 pages, submitted to PR
Complementarity of information sent via different bases
We discuss quantitatively the complementarity of information transmitted by a
quantum system prepared in a basis state in one out of several different
mutually unbiased bases (MUBs). We obtain upper bounds on the information
available to a receiver who has no knowledge of which MUB was chosen by the
sender. These upper bounds imply a complementarity of information encoded via
different MUBs and ultimately ensure the security in quantum key distribution
protocols.Comment: 9 pages, references adde
The Non-linear Dynamics of Meaning-Processing in Social Systems
Social order cannot be considered as a stable phenomenon because it contains
an order of reproduced expectations. When the expectations operate upon one
another, they generate a non-linear dynamics that processes meaning. Specific
meaning can be stabilized, for example, in social institutions, but all meaning
arises from a horizon of possible meanings. Using Luhmann's (1984) social
systems theory and Rosen's (1985) theory of anticipatory systems, I submit
equations for modeling the processing of meaning in inter-human communication.
First, a self-referential system can use a model of itself for the
anticipation. Under the condition of functional differentiation, the social
system can be expected to entertain a set of models; each model can also
contain a model of the other models. Two anticipatory mechanisms are then
possible: one transversal between the models, and a longitudinal one providing
the modeled systems with meaning from the perspective of hindsight. A system
containing two anticipatory mechanisms can become hyper-incursive. Without
making decisions, however, a hyper-incursive system would be overloaded with
uncertainty. Under this pressure, informed decisions tend to replace the
"natural preferences" of agents and an order of cultural expectations can
increasingly be shaped
Quantitative comparison of single- and two-particle properties in the cuprates
We explore the strong variations of the electronic properties of
copper-oxygen compounds across the doping phase diagram in a quantitative way.
To this end we calculate the electronic Raman response on the basis of results
from angle-resolved photoemission spectroscopy (ARPES). In the limits of our
approximations we find agreement on the overdoped side and pronounced
discrepancies at lower doping. In contrast to the successful approach for the
transport properties at low energies, the Raman and the ARPES data cannot be
reconciled by adding angle-dependent momentum scattering. We discuss possible
routes towards an explanation of the suppression of spectral weight close to
the points which sets in abruptly close to 21% doping.Comment: 7 pages, 4 figure
Electron Dynamics in NdCeCuO: Evidence for the Pseudogap State and Unconventional c-axis Response
Infrared reflectance measurements were made with light polarized along the a-
and c-axis of both superconducting and antiferromagnetic phases of electron
doped NdCeCuO. The results are compared to
characteristic features of the electromagnetic response in hole doped cuprates.
Within the CuO planes the frequency dependent scattering rate,
1/, is depressed below 650 cm; this behavior is a
hallmark of the pseudogap state. While in several hole doped compounds the
energy scales associated with the pseudogap and superconducting states are
quite close, we are able to show that in NdCeCuO
the two scales differ by more than one order of magnitude. Another feature of
the in-plane charge response is a peak in the real part of the conductivity,
, at 50-110 cm which is in sharp contrast with the
Drude-like response where is centered at . This
latter effect is similar to what is found in disordered hole doped cuprates and
is discussed in the context of carrier localization. Examination of the c-axis
conductivity gives evidence for an anomalously broad frequency range from which
the interlayer superfluid is accumulated. Compelling evidence for the pseudogap
state as well as other characteristics of the charge dynamics in
NdCeCuO signal global similarities of the cuprate
phase diagram with respect to electron and hole doping.Comment: Submitted to PR
B->eta(') Form Factors in QCD
We calculate the semileptonic form factors and
from QCD sum rules on the light-cone (LCSRs), to NLO in
QCD, and for small to moderate q^2, . We include in particular the so-called singlet contribution, i.e.\
weak annihilation of the B meson with the emission of two gluons which, thanks
to the U(1) anomaly, couple directly to \etap. This effect is
included to leading-twist accuracy. This contribution has been neglected in
previous calculations of the form factors from LCSRs. We find that the singlet
contribution to can be up to 20%, while that to is, as expected, much smaller and below 3%. We also suggest to measure
the ratio to better constrain the size of the singlet
contribution.Comment: 21 pages; version to appear in JHE
- …