5,096 research outputs found

    On Discrimination Discovery and Removal in Ranked Data using Causal Graph

    Full text link
    Predictive models learned from historical data are widely used to help companies and organizations make decisions. However, they may digitally unfairly treat unwanted groups, raising concerns about fairness and discrimination. In this paper, we study the fairness-aware ranking problem which aims to discover discrimination in ranked datasets and reconstruct the fair ranking. Existing methods in fairness-aware ranking are mainly based on statistical parity that cannot measure the true discriminatory effect since discrimination is causal. On the other hand, existing methods in causal-based anti-discrimination learning focus on classification problems and cannot be directly applied to handle the ranked data. To address these limitations, we propose to map the rank position to a continuous score variable that represents the qualification of the candidates. Then, we build a causal graph that consists of both the discrete profile attributes and the continuous score. The path-specific effect technique is extended to the mixed-variable causal graph to identify both direct and indirect discrimination. The relationship between the path-specific effects for the ranked data and those for the binary decision is theoretically analyzed. Finally, algorithms for discovering and removing discrimination from a ranked dataset are developed. Experiments using the real dataset show the effectiveness of our approaches.Comment: 9 page

    Real-time price discovery in stock, bond and foreign exchange markets

    Get PDF
    We characterize the response of U.S., German and British stock, bond and foreign exchange markets to real-time U.S. macroeconomic news. Our analysis is based on a unique data set of high-frequency futures returns for each of the markets. We find that news surprises produce conditional mean jumps; hence high-frequency stock, bond and exchange rate dynamics are linked to fundamentals. The details of the linkages are particularly intriguing as regards equity markets. We show that equity markets react differently to the same news depending on the state of the economy, with bad news having a positive impact during expansions and the traditionally-expected negative impact during recessions. We rationalize this by temporal variation in the competing "cash flow" and "discount rate" effects for equity valuation. This finding helps explain the time-varying correlation between stock and bond returns, and the relatively small equity market news effect when averaged across expansions and recessions. Lastly, relying on the pronounced heteroskedasticity in the high-frequency data, we document important contemporaneous linkages across all markets and countries over-and-above the direct news announcement effects. JEL Klassifikation: F3, F4, G1, C

    On the Optical Light Curves of Afterglows from Jetted Gamma-ray Burst Ejecta: Effects of Parameters

    Get PDF
    Due to some refinements in the dynamics, we can follow the overall evolution of a realistic jet numerically till its bulk velocity being as small as βc103c\beta c \sim 10^{-3} c. We find no obvious break in the optical light curve during the relativistic phase itself. However, an obvious break does exist at the transition from the relativistic phase to the non-relativistic phase, which typically occurs at time t106t \sim 10^6 --- 106.510^{6.5} s (i.e., 10 --- 30 d). The break is affected by many parameters, such as the electron energy fraction ξe\xi_{\rm e}, the magnetic energy fraction ξB2\xi_{\rm B}^2, the initial half opening angle θ0\theta_0, and the medium number density nn. Increase of any of them to a large enough value will make the break disappear. Although the break itself is parameter-dependent, afterglows from jetted GRB remnants are uniformly characterized by a quick decay during the non-relativistic phase, with power law timing index α2.1\alpha \geq 2.1. This is quite different from that of isotropic fireballs, and may be of fundamental importance for determining the degree of beaming in γ\gamma-ray bursts observationally.Comment: 8 pages, 10 embedded eps figures, MNRAS in press, using epsfig.sty and mn.st

    Spin Waves in Detwinned BaFe2_2As2_2

    Full text link
    Understanding magnetic interactions in the parent compounds of high-temperature superconductors forms the basis for determining their role for the mechanism of superconductivity. For parent compounds of iron pnictide superconductors such as AAFe2_2As2_2 (A=A= Ba, Ca, Sr), although spin excitations have been mapped out throughout the entire Brillouin zone (BZ), measurements were carried out on twinned samples and did not allow for a conclusive determination of the spin dynamics. Here we use inelastic neutron scattering to completely map out spin excitations of \sim100\% detwinned BaFe2_2As2_2. By comparing observed spectra with theoretical calculations, we conclude that the spin excitations can be well described by an itinerant model with important contributions from electronic correlations.Comment: 6 pages, 4 figures, with supplemental materia

    Prospect for detecting squeezed states of light created by a single atom in free space

    Full text link
    We discuss the possibilities of studying in detail the dynamics of spontaneous emission of a single photon by a single atom and measuring the transient degree of squeezing by means of full solid angle fluorescence detection.Comment: Accepted for publication in Optics Communication

    Coupling Of The B1g Phonon To The Anti-Nodal Electronic States of Bi2Sr2Ca0.92Y0.08Cu2O(8+delta)

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) on optimally doped Bi2Sr2Ca0.92Y0.08Cu2O(8+delta) uncovers a coupling of the electronic bands to a 40 meV mode in an extended k-space region away from the nodal direction, leading to a new interpretation of the strong renormalization of the electronic structure seen in Bi2212. Phenomenological agreements with neutron and Raman experiments suggest that this mode is the B1g oxygen bond-buckling phonon. A theoretical calculation based on this assignment reproduces the electronic renormalization seen in the data.Comment: 4 Pages, 4 Figures Updated Figures and Tex

    Analysis of particle production in ultra-relativistic heavy ion collisions within a two-source statistical model

    Full text link
    The experimental data on hadron yields and ratios in central lead-lead and gold-gold collisions at 158 AGeV/cc (SPS) and s=130\sqrt{s} = 130 AGeV (RHIC), respectively, are analysed within a two-source statistical model of an ideal hadron gas. A comparison with the standard thermal model is given. The two sources, which can reach the chemical and thermal equilibrium separately and may have different temperatures, particle and strangeness densities, and other thermodynamic characteristics, represent the expanding system of colliding heavy ions, where the hot central fireball is embedded in a larger but cooler fireball. The volume of the central source increases with rising bombarding energy. Results of the two-source model fit to RHIC experimental data at midrapidity coincide with the results of the one-source thermal model fit, indicating the formation of an extended fireball, which is three times larger than the corresponding core at SPS.Comment: 6 pages, REVTEX
    corecore