38,310 research outputs found

    Fundamental Framework for Technical Analysis

    Full text link
    Starting from the characterization of the past time evolution of market prices in terms of two fundamental indicators, price velocity and price acceleration, we construct a general classification of the possible patterns characterizing the deviation or defects from the random walk market state and its time-translational invariant properties. The classification relies on two dimensionless parameters, the Froude number characterizing the relative strength of the acceleration with respect to the velocity and the time horizon forecast dimensionalized to the training period. Trend-following and contrarian patterns are found to coexist and depend on the dimensionless time horizon. The classification is based on the symmetry requirements of invariance with respect to change of price units and of functional scale-invariance in the space of scenarii. This ``renormalized scenario'' approach is fundamentally probabilistic in nature and exemplifies the view that multiple competing scenarii have to be taken into account for the same past history. Empirical tests are performed on on about nine to thirty years of daily returns of twelve data sets comprising some major indices (Dow Jones, SP500, Nasdaq, DAX, FTSE, Nikkei), some major bonds (JGB, TYX) and some major currencies against the US dollar (GBP, CHF, DEM, JPY). Our ``renormalized scenario'' exhibits statistically significant predictive power in essentially all market phases. In constrast, a trend following strategy and trend + acceleration following strategy perform well only on different and specific market phases. The value of the ``renormalized scenario'' approach lies in the fact that it always finds the best of the two, based on a calculation of the stability of their predicted market trajectories.Comment: Latex, 27 page

    Is the Redshift Clustering of Long-Duration Gamma-Ray Bursts Significant?

    Full text link
    The 26 long-duration gamma-ray bursts (GRBs) with known redshifts form a distinct cosmological set, selected differently than other cosmological probes such as quasars and galaxies. Since the progenitors are now believed to be connected with active star-formation and since burst emission penetrates dust, one hope is that with a uniformly-selected sample, the large-scale redshift distribution of GRBs can help constrain the star-formation history of the Universe. However, we show that strong observational biases in ground-based redshift discovery hamper a clean determination of the large-scale GRB rate and hence the connection of GRBs to the star formation history. We then focus on the properties of the small-scale (clustering) distribution of GRB redshifts. When corrected for heliocentric motion relative to the local Hubble flow, the observed redshifts appear to show a propensity for clustering: 8 of 26 GRBs occurred within a recession velocity difference of 1000 km/s of another GRB. That is, 4 pairs of GRBs occurred within 30 h_65^-1 Myr in cosmic time, despite being causally separated on the sky. We investigate the significance of this clustering. Comparison of the numbers of close redshift pairs expected from the simulation with that observed shows no significant small-scale clustering excess in the present sample; however, the four close pairs occur only in about twenty percent of the simulated datasets (the precise significance of the clustering is dependent upon the modeled biases). We conclude with some impetuses and suggestions for future precise GRB redshift measurements.Comment: Published in the Astronomical Journal, June 2003: see http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2003AJ....125.2865

    Passive scalar intermittency in low temperature helium flows

    Full text link
    We report new measurements of turbulent mixing of temperature fluctuations in a low temperature helium gas experiment, spanning a range of microscale Reynolds number, RλR_{\lambda}, from 100 to 650. The exponents ξn\xi_{n} of the temperature structure functions ∼rξn \sim r^{\xi_{n}} are shown to saturate to ξ∞≃1.45±0.1\xi_{\infty} \simeq 1.45 \pm 0.1 for the highest orders, n∼10n \sim 10. This saturation is a signature of statistics dominated by front-like structures, the cliffs. Statistics of the cliff characteristics are performed, particularly their width are shown to scale as the Kolmogorov length scale.Comment: 4 pages, with 4 figure

    W Plus Multiple Jets at the LHC with High Energy Jets

    Get PDF
    We study the production of a W boson in association with n hard QCD jets (for n>=2), with a particular emphasis on results relevant for the Large Hadron Collider (7 TeV and 8 TeV). We present predictions for this process from High Energy Jets, a framework for all-order resummation of the dominant contributions from wide-angle QCD emissions. We first compare predictions against recent ATLAS data and then shift focus to observables and regions of phase space where effects beyond NLO are expected to be large.Comment: 19 pages, 9 figure

    Antiferromagnetic correlations and impurity broadening of NMR linewidths in cuprate superconductors

    Full text link
    We study a model of a d-wave superconductor with strong potential scatterers in the presence of antiferromagnetic correlations and apply it to experimental nuclear magnetic resonance (NMR) results on Zn impurities in the superconducting state of YBCO. We then focus on the contribution of impurity-induced paramagnetic moments, with Hubbard correlations in the host system accounted for in Hartree approximation. We show that local magnetism around individual impurities broadens the line, but quasiparticle interference between impurity states plays an important role in smearing out impurity satellite peaks. The model, together with estimates of vortex lattice effects, provides a semi-quantitative description of the impurity concentration dependence of the NMR line shape in the superconducting state, and gives a qualitative description of the temperature dependence of the line asymmetry. We argue that impurity-induced paramagnetism and resonant local density of states effects are both necessary to explain existing experiments.Comment: 15 pages, 23 figures, submitted to Phys. Rev.

    Phase transition in a spring-block model of surface fracture

    Full text link
    A simple and robust spring-block model obeying threshold dynamics is introduced to study surface fracture of an overlayer subject to stress induced by adhesion to a substrate. We find a novel phase transition in the crack morphology and fragment-size statistics when the strain and the substrate coupling are varied. Across the transition, the cracks display in succession short-range, power-law and long-range correlations. The study of stress release prior to cracking yields useful information on the cracking process.Comment: RevTeX, 4 pages, 4 Postscript figures included using epsfi

    Cold Quark Matter, Quadratic Corrections and Gauge/String Duality

    Full text link
    We make an estimate of the quadratic correction in the pressure of cold quark matter using gauge/string duality.Comment: 7 pages; v.2: reference added; v.3: reference and comments added, version to appear in PRD; v4. final version to appear in PRD; v.5: key reference adde

    Dopant-modulated pair interaction in cuprate superconductors

    Full text link
    Comparison of recent experimental STM data with single-impurity and many-impurity Bogoliubov-de Gennes calculations strongly suggests that random out-of-plane dopant atoms in cuprates modulate the pair interaction locally. This type of disorder is crucial to understanding the nanoscale electronic structure inhomogeneity observed in BSCCO-2212, and can reproduce observed correlations between the positions of impurity atoms and various aspects of the local density of states such as the gap magnitude and the height of the coherence peaks. Our results imply that each dopant atom modulates the pair interaction on a length scale of order one lattice constant.Comment: 5 pages, 4 figure

    Local modulations of the spin-fluctuation mediated pairing interaction by impurities in d-wave superconductors

    Get PDF
    We present a self-consistent real space formulation of spin-fluctuation mediated d-wave pairing. By calculating all relevant inhomogeneous spin and charge susceptibilities in real space within the random phase approximation (RPA), we obtain the effective pairing interaction and study its spatial dependence near both local potential and hopping impurities. A remarkably large enhancement of the pairing interaction may be obtained near the impurity site. We discuss the relevance of our result to inhomogeneities observed by scanning tunneling spectroscopy on the surface of cuprate superconductors.Comment: 8 pages, 7 figure
    • …
    corecore