400 research outputs found
Electronic Structure and Heavy Fermion Behavior in LiV_2O_4
First principles density functional calculations of the electronic and
magnetic properties of spinel-structure LiVO have been performed
using the full potential linearized augmented planewave method. The
calculations show that the electronic structure near the Fermi energy consists
of a manifold of 12 bands derived from V states, weakly hybridized
with O p states. While the total width of this active manifold is approximately
2 eV, it may be roughly decomposed into two groups: high velocity bands and
flatter bands, although these mix in density functional calculations. The flat
bands, which are the more atomic-like lead to a high density of states and
magnetic instability of local moment character. The value of the on-site
exchange energy is sensitive to the exact exchange correlation parameterization
used in the calculations, but is much larger than the interaction between
neighboring spins, reflecting the weak coupling of the magnetic system with the
high velocity bands. A scenario for the observed heavy fermion behavior is
discussed in which conduction electrons in the dispersive bands are weakly
scattered by local moments associated with strongly correlated electrons in the
heavy bands.This is analogous to that in conventional Kondo type heavy
fermions, but is unusual in that both the local moments and conduction
electrons come from the same d-manifold.Comment: 6 Revtex pages, Postscript figs embedded. Revision: figure 4 replaced
with a better version, showing the band character explicitel
Onset of magnetism in B2 transition metals aluminides
Ab initio calculation results for the electronic structure of disordered bcc
Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6)
alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl,
NiAl) phases with point defects are presented. The calculations were performed
using the coherent potential approximation within the Korringa-Kohn-Rostoker
method (KKR-CPA) for the disordered case and the tight-binding linear
muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. We studied
in particular the onset of magnetism in Fe-Al and Co-Al systems as a function
of the defect structure. We found the appearance of large local magnetic
moments associated with the transition metal (TM) antisite defect in FeAl and
CoAl compounds, in agreement with the experimental findings. Moreover, we found
that any vacancies on both sublattices enhance the magnetic moments via
reducing the charge transfer to a TM atom. Disordered Fe-Al alloys are
ferromagnetically ordered for the whole range of composition studied, whereas
Co-Al becomes magnetic only for Co concentration >0.5.Comment: 11 pages with 9 embedded postscript figures, to be published in
Phys.Rev.
A jump-growth model for predator-prey dynamics: derivation and application to marine ecosystems
This paper investigates the dynamics of biomass in a marine ecosystem. A
stochastic process is defined in which organisms undergo jumps in body size as
they catch and eat smaller organisms. Using a systematic expansion of the
master equation, we derive a deterministic equation for the macroscopic
dynamics, which we call the deterministic jump-growth equation, and a linear
Fokker-Planck equation for the stochastic fluctuations. The McKendrick--von
Foerster equation, used in previous studies, is shown to be a first-order
approximation, appropriate in equilibrium systems where predators are much
larger than their prey. The model has a power-law steady state consistent with
the approximate constancy of mass density in logarithmic intervals of body mass
often observed in marine ecosystems. The behaviours of the stochastic process,
the deterministic jump-growth equation and the McKendrick--von Foerster
equation are compared using numerical methods. The numerical analysis shows two
classes of attractors: steady states and travelling waves.Comment: 27 pages, 4 figures. Final version as published. Only minor change
From nodal liquid to nodal Mottness in a frustrated Hubbard model
We investigate the physics of frustrated 3-leg Hubbard ladders in the band
limit, when hopping across the ladder's rungs (t) is of the same
order as hopping along them (t) much greater than the onsite Coulomb repulsion
(U). We show that this model exhibits a striking electron-hole asymmetry close
to half-filling: the hole-doped system at low temperatures develops a
Resonating Valence Bond (RVB)-like d-wave gap (pseudogap close to (,0))
coinciding with gapless nodal excitations (nodal liquid); in contrast, the
electron-doped system is seen to develop a Mott gap at the nodes, whilst
retaining a metallic character of its majority Fermi surface. At lower
temperatures in the electron-doped case, d-wave superconducting correlations --
here, coexisting with gapped nodal excitations -- are already seen to arise.
Upon further doping the hole-doped case, the RVB-like state yields to d-wave
superconductivity. Such physics is reminiscent of that exhibited by the high
temperature cuprate superconductors--notably electron-hole asymmetry as noted
by Angle Resolved PhotoEmission Spectroscopy (ARPES) and the resistivity
exponents observed. This toy model also reinforces the importance of a more
thorough experimental investigation of the known 3-leg ladder cuprate systems,
and may have some bearing on low dimensional organic superconductors.Comment: 26 pages, 16 figure
Modeling the actinides with disordered local moments
A first-principles disordered local moment (DLM) picture within the
local-spin-density and coherent potential approximations (LSDA+CPA) of the
actinides is presented. The parameter free theory gives an accurate description
of bond lengths and bulk modulus. The case of -Pu is studied in
particular and the calculated density of states is compared to data from
photo-electron spectroscopy. The relation between the DLM description, the
dynamical mean field approach and spin-polarized magnetically ordered modeling
is discussed.Comment: 6 pages, 4 figure
Electronic structure, phase stability and chemical bonding in ThAl and ThAlH
We present the results of theoretical investigation on the electronic
structure, bonding nature and ground state properties of ThAl and
ThAlH using generalized-gradient-corrected first-principles
full-potential density-functional calculations. ThAlH has been reported
to violate the "2 \AA rule" of H-H separation in hydrides. From our total
energy as well as force-minimization calculations, we found a shortest H-H
separation of 1.95 {\AA} in accordance with recent high resolution powder
neutron diffraction experiments. When the ThAl matrix is hydrogenated, the
volume expansion is highly anisotropic, which is quite opposite to other
hydrides having the same crystal structure. The bonding nature of these
materials are analyzed from the density of states, crystal-orbital Hamiltonian
population and valence-charge-density analyses. Our calculation predicts
different nature of bonding for the H atoms along and . The strongest
bonding in ThAlH is between Th and H along which form dumb-bell
shaped H-Th-H subunits. Due to this strong covalent interaction there is very
small amount of electrons present between H atoms along which makes
repulsive interaction between the H atoms smaller and this is the precise
reason why the 2 {\AA} rule is violated. The large difference in the
interatomic distances between the interstitial region where one can accommodate
H in the and planes along with the strong covalent interaction
between Th and H are the main reasons for highly anisotropic volume expansion
on hydrogenation of ThAl.Comment: 14 pages, 9 figure
First principles electronic structure of spinel LiCr2O4: A possible half-metal?
We have employed first-principles electronic structure calculations to
examine the hypothetical (but plausible) oxide spinel, LiCr2O4 with the d^{2.5}
electronic configuration. The cell (cubic) and internal (oxygen position)
structural parameters have been obtained for this compound through structural
relaxation in the first-principles framework. Within the one-electron band
picture, we find that LiCr2O4 is magnetic, and a candidate half-metal. The
electronic structure is substantially different from the closely related and
well known rutile half-metal CrO2. In particular, we find a smaller conduction
band width in the spinel compound, perhaps as a result of the distinct topology
of the spinel crystal structure, and the reduced oxidation state. The magnetism
and half-metallicity of LiCr2O4 has been mapped in the parameter space of its
cubic crystal structure. Comparisons with superconducting LiTi2O4 (d^{0.5}),
heavy-fermion LiV2O4 (d^{1.5}) and charge-ordering LiMn2O4 (d^{3.5}) suggest
the effectiveness of a nearly-rigid band picture involving simple shifts of the
position of E_F in these very different materials. Comparisons are also made
with the electronic structure of ZnV2O4 (d^{2}), a correlated insulator that
undergoes a structural and antiferromagnetic phase transition.Comment: 9 pages, 7 Figures, version as published in PR
Orbital state and magnetic properties of LiV_2 O_4
LiV_2 O_4 is one of the most puzzling compounds among transition metal oxides
because of its heavy fermion like behavior at low temperatures. In this paper
we present results for the orbital state and magnetic properties of LiV_2 O_4
obtained from a combination of density functional theory within the local
density approximation and dynamical mean-field theory (DMFT). The DMFT
equations are solved by quantum Monte Carlo simulations. The trigonal crystal
field splits the V 3d orbitals such that the a_{1g} and e_{g}^{pi} orbitals
cross the Fermi level, with the former being slightly lower in energy and
narrower in bandwidth. In this situation, the d-d Coulomb interaction leads to
an almost localization of one electron per V ion in the a_{1g} orbital, while
the e_{g}^{pi} orbitals form relatively broad bands with 1/8 filling. 2The
theoretical high-temperature paramagnetic susceptibility chi(T) follows a
Curie-Weiss law with an effective paramagnetic moment p_{eff}=1.65 in agreement
with the experimental results.Comment: 11 pages, 10 figures, 2 table
Optical symmetries and anisotropic transport in high-Tc superconductors
A simple symmetry analysis of in-plane and out-of-plane transport in a family
of high temperature superconductors is presented. It is shown that generalized
scaling relations exist between the low frequency electronic Raman response and
the low frequency in-plane and out-of-plane conductivities in both the normal
and superconducting states of the cuprates. Specifically, for both the normal
and superconducting state, the temperature dependence of the low frequency
Raman slope scales with the axis conductivity, while the
Raman slope scales with the in-plane conductivity. Comparison with experiments
in the normal state of Bi-2212 and Y-123 imply that the nodal transport is
largely doping independent and metallic, while transport near the BZ axes is
governed by a quantum critical point near doping holes per
CuO plaquette. Important differences for La-214 are discussed. It is also
shown that the axis conductivity rise for is a consequence of
partial conservation of in-plane momentum for out-of-plane transport.Comment: 16 pages, 8 Figures (3 pages added, new discussion on pseudogap and
charge ordering in La214
Electron recombination with multicharged ions via chaotic many-electron states
We show that a dense spectrum of chaotic multiply-excited eigenstates can
play a major role in collision processes involving many-electron multicharged
ions. A statistical theory based on chaotic properties of the eigenstates
enables one to obtain relevant energy-averaged cross sections in terms of sums
over single-electron orbitals. Our calculation of the low-energy electron
recombination of Au shows that the resonant process is 200 times more
intense than direct radiative recombination, which explains the recent
experimental results of Hoffknecht {\em et al.} [J. Phys. B {\bf 31}, 2415
(1998)].Comment: 9 pages, including 1 figure, REVTe
- …
