7,521 research outputs found

    Phase fluctuations in atomic Bose gases

    Full text link
    We improve on the Popov theory for partially Bose-Einstein condensed atomic gases by treating the phase fluctuations exactly. As a result, the theory becomes valid in arbitrary dimensions and is able to describe the low-temperature crossover between three, two and one-dimensional Bose gases, which is currently being explored experimentally. We consider both homogeneous and trapped Bose gases.Comment: 4 pages. Title changed Major changes involve extension of theory to include trapped Bose gases. Deletion of reference to and comparison with hydrogen experiment. Due to these changes, second author added. Modified manuscript accepted for PR

    Acceptability of novel lifelogging technology to determine context of sedentary behaviour in older adults

    Get PDF
    <strong>Objective:</strong> Lifelogging, using body worn sensors (activity monitors and time lapse photography) has the potential to shed light on the context of sedentary behaviour. The objectives of this study were to examine the acceptability, to older adults, of using lifelogging technology and indicate its usefulness for understanding behaviour.<strong> </strong><strong>Method:</strong> 6 older adults (4 males, mean age: 68yrs) wore the equipment (ActivPAL<sup>TM</sup> and Vicon Revue<sup>TM</sup>/SenseCam<sup>TM</sup>) for 7 consecutive days during free-living activity. The older adults’ perception of the lifelogging technology was assessed through semi-structured interviews, including a brief questionnaire (Likert scale), and reference to the researcher&#39;s diary. <strong>Results:</strong> Older adults in this study found the equipment acceptable to wear and it did not interfere with privacy, safety or create reactivity, but they reported problems with the actual technical functioning of the camera. <strong>Conclusion:</strong> This combination of sensors has good potential to provide lifelogging information on the context of sedentary behaviour

    Channeling Effects in Direct Dark Matter Detectors

    Full text link
    The channeling of the ion recoiling after a collision with a WIMP changes the ionization signal in direct detection experiments, producing a larger signal than otherwise expected. We give estimates of the fraction of channeled recoiling ions in NaI (Tl), Si and Ge crystals using analytic models produced since the 1960's and 70's to describe channeling and blocking effects. We find that the channeling fraction of recoiling lattice nuclei is smaller than that of ions that are injected into the crystal and that it is strongly temperature dependent.Comment: 8 pages, 12 figures, To appear in the Proceedings of the sixth International Workshop on the Dark Side of the Universe (DSU2010) Leon, Guanajuato, Mexico 1-6 June 201

    Low latency via redundancy

    Full text link
    Low latency is critical for interactive networked applications. But while we know how to scale systems to increase capacity, reducing latency --- especially the tail of the latency distribution --- can be much more difficult. In this paper, we argue that the use of redundancy is an effective way to convert extra capacity into reduced latency. By initiating redundant operations across diverse resources and using the first result which completes, redundancy improves a system's latency even under exceptional conditions. We study the tradeoff with added system utilization, characterizing the situations in which replicating all tasks reduces mean latency. We then demonstrate empirically that replicating all operations can result in significant mean and tail latency reduction in real-world systems including DNS queries, database servers, and packet forwarding within networks

    Mott insulators in an optical lattice with high filling factors

    Full text link
    We discuss the superfluid to Mott insulator transition of an atomic Bose gas in an optical lattice with high filling factors. We show that also in this multi-band situation, the long-wavelength physics is described by a single-band Bose-Hubbard model. We determine the many-body renormalization of the tunneling and interaction parameters in the effective Bose-Hubbard Hamiltonian, and consider the resulting model at nonzero temperatures. We show that in particular for a one or two-dimensional optical lattice, the Mott insulator phase is more difficult to realize than anticipated previously.Comment: 5 pages, 3 figures, title changed, major restructuring, resubmitted to PR

    Fast matrix computations for pair-wise and column-wise commute times and Katz scores

    Full text link
    We first explore methods for approximating the commute time and Katz score between a pair of nodes. These methods are based on the approach of matrices, moments, and quadrature developed in the numerical linear algebra community. They rely on the Lanczos process and provide upper and lower bounds on an estimate of the pair-wise scores. We also explore methods to approximate the commute times and Katz scores from a node to all other nodes in the graph. Here, our approach for the commute times is based on a variation of the conjugate gradient algorithm, and it provides an estimate of all the diagonals of the inverse of a matrix. Our technique for the Katz scores is based on exploiting an empirical localization property of the Katz matrix. We adopt algorithms used for personalized PageRank computing to these Katz scores and theoretically show that this approach is convergent. We evaluate these methods on 17 real world graphs ranging in size from 1000 to 1,000,000 nodes. Our results show that our pair-wise commute time method and column-wise Katz algorithm both have attractive theoretical properties and empirical performance.Comment: 35 pages, journal version of http://dx.doi.org/10.1007/978-3-642-18009-5_13 which has been submitted for publication. Please see http://www.cs.purdue.edu/homes/dgleich/publications/2011/codes/fast-katz/ for supplemental code
    corecore