7,521 research outputs found
Phase fluctuations in atomic Bose gases
We improve on the Popov theory for partially Bose-Einstein condensed atomic
gases by treating the phase fluctuations exactly. As a result, the theory
becomes valid in arbitrary dimensions and is able to describe the
low-temperature crossover between three, two and one-dimensional Bose gases,
which is currently being explored experimentally. We consider both homogeneous
and trapped Bose gases.Comment: 4 pages. Title changed Major changes involve extension of theory to
include trapped Bose gases. Deletion of reference to and comparison with
hydrogen experiment. Due to these changes, second author added. Modified
manuscript accepted for PR
Recommended from our members
Manipulating nanoscale structure to control functionality in printed organic photovoltaic, transistor and bioelectronic devices.
Printed electronics is simultaneously one of the most intensely studied emerging research areas in science and technology and one of the fastest growing commercial markets in the world today. For the past decade the potential for organic electronic (OE) materials to revolutionize this printed electronics space has been widely promoted. Such conviction in the potential of these carbon-based semiconducting materials arises from their ability to be dissolved in solution, and thus the exciting possibility of simply printing a range of multifunctional devices onto flexible substrates at high speeds for very low cost using standard roll-to-roll printing techniques. However, the transition from promising laboratory innovations to large scale prototypes requires precise control of nanoscale material and device structure across large areas during printing fabrication. Maintaining this nanoscale material control during printing presents a significant new challenge that demands the coupling of OE materials and devices with clever nanoscience fabrication approaches that are adapted to the limited thermodynamic levers available. In this review we present an update on the strategies and capabilities that are required in order to manipulate the nanoscale structure of large area printed organic photovoltaic (OPV), transistor and bioelectronics devices in order to control their device functionality. This discussion covers a range of efforts to manipulate the electroactive ink materials and their nanostructured assembly into devices, and also device processing strategies to tune the nanoscale material properties and assembly routes through printing fabrication. The review finishes by highlighting progress in printed OE devices that provide a feedback loop between laboratory nanoscience innovations and their feasibility in adapting to large scale printing fabrication. The ability to control material properties on the nanoscale whilst simultaneously printing functional devices on the square metre scale is prompting innovative developments in the targeted nanoscience required for OPV, transistor and biofunctional devices
Acceptability of novel lifelogging technology to determine context of sedentary behaviour in older adults
<strong>Objective:</strong> Lifelogging, using body worn sensors (activity monitors and time lapse photography) has the potential to shed light on the context of sedentary behaviour. The objectives of this study were to examine the acceptability, to older adults, of using lifelogging technology and indicate its usefulness for understanding behaviour.<strong> </strong><strong>Method:</strong> 6 older adults (4 males, mean age: 68yrs) wore the equipment (ActivPAL<sup>TM</sup> and Vicon Revue<sup>TM</sup>/SenseCam<sup>TM</sup>) for 7 consecutive days during free-living activity. The older adults’ perception of the lifelogging technology was assessed through semi-structured interviews, including a brief questionnaire (Likert scale), and reference to the researcher's diary. <strong>Results:</strong> Older adults in this study found the equipment acceptable to wear and it did not interfere with privacy, safety or create reactivity, but they reported problems with the actual technical functioning of the camera. <strong>Conclusion:</strong> This combination of sensors has good potential to provide lifelogging information on the context of sedentary behaviour
Channeling Effects in Direct Dark Matter Detectors
The channeling of the ion recoiling after a collision with a WIMP changes the
ionization signal in direct detection experiments, producing a larger signal
than otherwise expected. We give estimates of the fraction of channeled
recoiling ions in NaI (Tl), Si and Ge crystals using analytic models produced
since the 1960's and 70's to describe channeling and blocking effects. We find
that the channeling fraction of recoiling lattice nuclei is smaller than that
of ions that are injected into the crystal and that it is strongly temperature
dependent.Comment: 8 pages, 12 figures, To appear in the Proceedings of the sixth
International Workshop on the Dark Side of the Universe (DSU2010) Leon,
Guanajuato, Mexico 1-6 June 201
Low latency via redundancy
Low latency is critical for interactive networked applications. But while we
know how to scale systems to increase capacity, reducing latency --- especially
the tail of the latency distribution --- can be much more difficult. In this
paper, we argue that the use of redundancy is an effective way to convert extra
capacity into reduced latency. By initiating redundant operations across
diverse resources and using the first result which completes, redundancy
improves a system's latency even under exceptional conditions. We study the
tradeoff with added system utilization, characterizing the situations in which
replicating all tasks reduces mean latency. We then demonstrate empirically
that replicating all operations can result in significant mean and tail latency
reduction in real-world systems including DNS queries, database servers, and
packet forwarding within networks
Mott insulators in an optical lattice with high filling factors
We discuss the superfluid to Mott insulator transition of an atomic Bose gas
in an optical lattice with high filling factors. We show that also in this
multi-band situation, the long-wavelength physics is described by a single-band
Bose-Hubbard model. We determine the many-body renormalization of the tunneling
and interaction parameters in the effective Bose-Hubbard Hamiltonian, and
consider the resulting model at nonzero temperatures. We show that in
particular for a one or two-dimensional optical lattice, the Mott insulator
phase is more difficult to realize than anticipated previously.Comment: 5 pages, 3 figures, title changed, major restructuring, resubmitted
to PR
Fast matrix computations for pair-wise and column-wise commute times and Katz scores
We first explore methods for approximating the commute time and Katz score
between a pair of nodes. These methods are based on the approach of matrices,
moments, and quadrature developed in the numerical linear algebra community.
They rely on the Lanczos process and provide upper and lower bounds on an
estimate of the pair-wise scores. We also explore methods to approximate the
commute times and Katz scores from a node to all other nodes in the graph.
Here, our approach for the commute times is based on a variation of the
conjugate gradient algorithm, and it provides an estimate of all the diagonals
of the inverse of a matrix. Our technique for the Katz scores is based on
exploiting an empirical localization property of the Katz matrix. We adopt
algorithms used for personalized PageRank computing to these Katz scores and
theoretically show that this approach is convergent. We evaluate these methods
on 17 real world graphs ranging in size from 1000 to 1,000,000 nodes. Our
results show that our pair-wise commute time method and column-wise Katz
algorithm both have attractive theoretical properties and empirical
performance.Comment: 35 pages, journal version of
http://dx.doi.org/10.1007/978-3-642-18009-5_13 which has been submitted for
publication. Please see
http://www.cs.purdue.edu/homes/dgleich/publications/2011/codes/fast-katz/ for
supplemental code
Microfluidic System for Long Term Culturing and Monitoring of Organotypic Brain Tissue and Cells
- …
