21,911 research outputs found

    Herbage intake in Danish Jersey and Danish Holstein steers on perennial ryegrass/white clover pasture

    Get PDF
    The objective of this study was to estimate herbage intake in Danish Friesian and Danish Jersey steers at an age of 8-9 months on ryegrass / white clover pasture. The steers were turned out on pasture in late April and herbage intake was estimated in June in steers of a mean live weight (± S.D.) of 264 ± 14 kg and 185 ± 25 kg for Danish Friesian and Danish Jersey respectively. Faeces and herbage samples were analysed for alkanes to estimate herbage dry matter intake, dry matter digestibility (DMD) and botanical composition of intake. The weight gains at the time of herbage intake estimation in June (kg/day) were 1.142 ± 265 kg/day and 0.927 ± 168 kg/day for Danish Friesian and Danish Jersey respectively. Daily herbage intake (kg dry matter (DM)) estimated by alkanes C32 /C33 was 8.33 ± 0.97 and 6.28 ± 0.61 per day (P<0.001) and 3.15 ± 0.32 and 3.43 ± 0.30 per 100 kg liveweight (LW) (P<0.05) for Danish Friesian and Danish Jersey respectively. The botanical composition of the diet was the same for Danish Friesian and Danish Jersey with about half of the diet being grass leaves and the other half clover leaves. It is concluded that Danish Jersey steers have higher herbage intake per 100 kg LW than Danish Friesian steers of the same age, but herbage intake per kg metabolic LW is not different between the two breeds

    Time-Dependent Random Walks and the Theory of Complex Adaptive Systems

    Full text link
    Motivated by novel results in the theory of complex adaptive systems, we analyze the dynamics of random walks in which the jumping probabilities are {\it time-dependent}. We determine the survival probability in the presence of an absorbing boundary. For an unbiased walk the survival probability is maximized in the case of large temporal oscillations in the jumping probabilities. On the other hand, a random walker who is drifted towards the absorbing boundary performs best with a constant jumping probability. We use the results to reveal the underlying dynamics responsible for the phenomenon of self-segregation and clustering observed in the evolutionary minority game.Comment: 5 pages, 2 figure

    The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars

    Full text link
    The detailed chemical composition of most metal-poor halo stars has been found to be highly uniform, but a minority of stars exhibit dramatic enhancements in their abundances of heavy neutron-capture elements and/or of carbon. The key question for Galactic chemical evolution models is whether these peculiarities reflect the composition of the natal clouds, or if they are due to later mass transfer of processed material from a binary companion. If the former case applies, the observed excess of certain elements was implanted within selected clouds in the early ISM from a production site at interstellar distances. Our aim is to determine the frequency and orbital properties of binaries among these chemically peculiar stars. This information provides the basis for deciding whether mass transfer from a binary companion is necessary and sufficient to explain their unusual compositions. This paper discusses our study of a sample of 17 moderately (r-I) and highly (r-II) r-process-element enhanced VMP and EMP stars. High-resolution, low signal-to-noise spectra of the stars were obtained at roughly monthly intervals over 8 years with the FIES spectrograph at the Nordic Optical Telescope. From these spectra, radial velocities with an accuracy of ~100 m/s were determined by cross-correlation against an optimized template. 14 of the programme stars exhibit no significant RV variation over this period, while 3 are binaries with orbits of typical eccentricity for their periods, resulting in a normal binary frequency of ~18+-6% for the sample. Our results confirm our preliminary conclusion from 2011, based on partial data, that the chemical peculiarity of the r-I and r-II stars is not caused by any putative binary companions. Instead, it was imprinted on the natal molecular clouds of these stars by an external, distant source. Models of the ISM in early galaxies should account for such mechanisms.Comment: 14 pages, 3 figures, accepted for publication in Astronomy and Astrophysic

    Superconducting phase diagram of itinerant antiferromagnets

    Full text link
    We study the phase diagram of the Hubbard model in the weak-coupling limit for coexisting spin-density-wave order and spin-fluctuation-mediated superconductivity. Both longitudinal and transverse spin fluctuations contribute significantly to the effective interaction potential, which creates Cooper pairs of the quasi-particles of the antiferromagnetic metallic state. We find a dominant dx2−y2d_{x^2-y^2}-wave solution in both electron- and hole-doped cases. In the quasi-spin triplet channel, the longitudinal fluctuations give rise to an effective attraction supporting a pp-wave gap, but are overcome by repulsive contributions from the transverse fluctuations which disfavor pp-wave pairing compared to dx2−y2d_{x^2-y^2}. The sub-leading pair instability is found to be in the gg-wave channel, but complex admixtures of dd and gg are not energetically favored since their nodal structures coincide. Inclusion of interband pairing, in which each fermion in the Cooper pair belongs to a different spin-density-wave band, is considered for a range of electron dopings in the regime of well-developed magnetic order. We demonstrate that these interband pairing gaps, which are non-zero in the magnetic state, must have the same parity under inversion as the normal intraband gaps. The self-consistent solution to the full system of five coupled gap equations give intraband and interband pairing gaps of dx2−y2d_{x^2-y^2} structure and similar gap magnitude. In conclusion, the dx2−y2d_{x^2-y^2} gap dominates for both hole and electron doping inside the spin-density-wave phase.Comment: 14 pages, 9 figure

    Local modulations of the spin-fluctuation mediated pairing interaction by impurities in d-wave superconductors

    Get PDF
    We present a self-consistent real space formulation of spin-fluctuation mediated d-wave pairing. By calculating all relevant inhomogeneous spin and charge susceptibilities in real space within the random phase approximation (RPA), we obtain the effective pairing interaction and study its spatial dependence near both local potential and hopping impurities. A remarkably large enhancement of the pairing interaction may be obtained near the impurity site. We discuss the relevance of our result to inhomogeneities observed by scanning tunneling spectroscopy on the surface of cuprate superconductors.Comment: 8 pages, 7 figure

    Competing Ordered Phases in URu2Si2: Hydrostatic Pressure and Re-substitution

    Full text link
    A persistent kink in the pressure dependence of the \hidden order" (HO) transition temperature of URu2-xRexSi2 is observed at a critical pressure Pc=15 kbar for 0 < x < 0.08. In URu2Si2, the kink at Pc is accompanied by the destruction of superconductivity; a change in the magnitude of a spin excitation gap, determined from electrical resistivity measurements; and a complete gapping of a portion of the Fermi surface (FS), inferred from a change in scattering and the competition between the HO state and superconductivity for FS fraction

    The role of binaries in the enrichment of the early Galactic halo. II. Carbon-Enhanced Metal-Poor Stars - CEMP-no stars

    Full text link
    The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon - the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds, or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Most programme stars exhibit no statistically significant radial-velocit variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2,000 days and normal eccentricity; the binary frequency for the sample is 17+-9%. The single stars mostly belong to the recently-identified ``low-C band'', while the binaries have higher absolute carbon abundances. We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic ISM by an even earlier, external source, strongly indicating that the CEMP-no stars are likely bona fide second-generation stars. We discuss potential production sites for carbon and its transfer across interstellar distances in the early ISM, and implications for the composition of high-redshift DLA systems. Abridged.Comment: 16 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Maps of complex motion selectivity in the superior temporal cortex of the alert macaque monkey: a double-label 2-deoxyglucose study

    Get PDF
    The superior temporal sulcus (STS) of the macaque monkey contains multiple visual areas. Many neurons within these regions respond selectively to motion direction and to more complex motion patterns, such as expansion, contraction and rotation. Single-unit recording and optical recording studies in MT/MST suggest that cells with similar tuning properties are clustered into columns extending through multiple cortical layers. In this study, we used a double-label 2-deoxyglucose technique in awake, behaving macaque monkeys to clarify this functional organization. This technique allowed us to label, in a single animal, two populations of neurons responding to two different visual stimuli. In one monkey we compared expansion with contraction; in a second monkey we compared expansion with clockwise rotation. Within the STS we found a patchy arrangement of cortical columns with alternating stimulus selectivity: columns of neurons preferring expansion versus contraction were more widely separated than those selective for expansion versus rotation. This mosaic of interdigitating columns on the floor and posterior bank of the STS included area MT and some neighboring regions of cortex, perhaps including area MST

    Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates

    Full text link
    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi2_2Sr2_2CaCu2_2O8_8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude "filter" theories on a microscopic foundation and solves a long standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.Comment: 5 pages, 5 figures, published version (Supplemental Material: 5 pages, 11 figures) for associated video file, see http://itp.uni-frankfurt.de/~kreisel/QPI_BSCCO_BdG_p_W.mp
    • …
    corecore