39 research outputs found

    Gill transcriptomic responses to toxin-producing alga Prymnesium parvum in rainbow trout

    Get PDF
    This work was supported by the BBSRC EastBio PhD studentship awarded to MC, the Danish Strategic Research Council grant No 060300449B HABFISH, and the European Maritime and Fisheries Fund and the Danish Fisheries Agency joint grant “Sundt Dambrug”. Molecular work at University of Aberdeen was funded by Scottish Aquaculture Innovation grant SL 2017 08. EK was supported by BBSRC grant BB/R018812/1.The gill of teleost fish is a multifunctional organ involved in many physiological processes, including protection of the mucosal gill surface against pathogens and other environmental antigens by the gill-associated lymphoid tissue (GIALT). Climate change associated phenomena, such as increasing frequency and magnitude of harmful algal blooms (HABs) put extra strain on gill function, contributing to enhanced fish mortality and fish kills. However, the molecular basis of the HAB-induced gill injury remains largely unknown due to the lack of high-throughput transcriptomic studies performed on teleost fish in laboratory conditions. We used juvenile rainbow trout (Oncorhynchus mykiss) to investigate the transcriptomic responses of the gill tissue to two (high and low) sublethal densities of the toxin-producing alga Prymnesium parvum, in relation to non-exposed control fish. The exposure time to P. parvum (4–5 h) was sufficient to identify three different phenotypic responses among the exposed fish, enabling us to focus on the common gill transcriptomic responses to P. parvum that were independent of dose and phenotype. The inspection of common differentially expressed genes (DEGs), canonical pathways, upstream regulators and downstream effects pointed towards P. parvum-induced inflammatory response and gill inflammation driven by alterations of Acute Phase Response Signalling, IL-6 Signalling, IL-10 Signalling, Role of PKR in Interferon Induction and Antiviral Response, IL-8 Signalling and IL-17 Signalling pathways. While we could not determine if the inferred gill inflammation was progressing or resolving, our study clearly suggests that P. parvum blooms may contribute to the serious gill disorders in fish. By providing insights into the gill transcriptomic responses to toxin-producing P. parvum in teleost fish, our research opens new avenues for investigating how to monitor and mitigate toxicity of HABs before they become lethal.Publisher PDFPeer reviewe

    WISEA J083011.95+283716.0: A Missing Link Planetary-Mass Object

    Get PDF
    We present the discovery of WISEA J083011.95+283716.0, the first Y dwarf candidate identified through the Backyard Worlds: Planet 9 citizen science project. We identified this object as a red, fast-moving source with a faint W2W2 detection in multi-epoch \textit{AllWISE} and unWISE images. We have characterized this object with Spitzer Space Telescope and \textit{Hubble Space Telescope} follow-up imaging. With mid-infrared detections in \textit{Spitzer}'s \emph{ch1} and \emph{ch2} bands and flux upper limits in Hubble Space Telescope F105WF105W and F125WF125W filters, we find that this object is both very faint and has extremely red colors (ch1ch2=3.25±0.23ch1-ch2 = 3.25\pm0.23 mag, F125Wch29.36F125W-ch2 \geq 9.36 mag), consistent with a Teff300_{eff}\sim300 K source, as estimated from the known Y dwarf population. A preliminary parallax provides a distance of 11.11.5+2.011.1^{+2.0}_{-1.5} pc, leading to a slightly warmer temperature of 350\sim350 K. The extreme faintness and red Hubble Space Telescope and Spitzer Space Telescope colors of this object suggest it may be a link between the broader Y dwarf population and the coldest known brown dwarf WISE J0855-0714, and highlight our limited knowledge of the true spread of Y dwarf colors. We also present four additional Backyard Worlds: Planet 9 late-T brown dwarf discoveries within 30 pc.Comment: 13 pages, 6 figures, 5 table

    A genetically modified minipig model for Alzheimer's disease with SORL1 haploinsufficiency

    Get PDF
    The established causal genes in Alzheimer’s disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease’s initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%–3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of β-amyloid (Aβ) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD
    corecore