16 research outputs found

    Processing and performance of topobathymetric lidar data for geomorphometric and morphological classification in a high-energy tidal environment

    Get PDF
    The transition zone between land and water is difficult to map with conventional geophysical systems due to shallow water depth and often challenging environmental conditions. The emerging technology of airborne topobathymetric light detection and ranging (lidar) is capable of providing both topographic and bathymetric elevation information, using only a single green laser, resulting in a seamless coverage of the land&ndash;water transition zone. However, there is no transparent and reproducible method for processing green topobathymetric lidar data into a digital elevation model (DEM). The general processing steps involve data filtering, water surface detection and refraction correction. Specifically, the procedure of water surface detection and modelling, solely using green laser lidar data, has not previously been described in detail for tidal environments. The aim of this study was to fill this gap of knowledge by developing a step-by-step procedure for making a digital water surface model (DWSM) using the green laser lidar data. The detailed description of the processing procedure augments its reliability, makes it user-friendly and repeatable. A DEM was obtained from the processed topobathymetric lidar data collected in spring 2014 from the Knudedyb tidal inlet system in the Danish Wadden Sea. The vertical accuracy of the lidar data is determined to ±8 cm at a 95 % confidence level, and the horizontal accuracy is determined as the mean error to ±10 cm. The lidar technique is found capable of detecting features with a size of less than 1 m<sup>2</sup>. The derived high-resolution DEM was applied for detection and classification of geomorphometric and morphological features within the natural environment of the study area. Initially, the bathymetric position index (BPI) and the slope of the DEM were used to make a continuous classification of the geomorphometry. Subsequently, stage (or elevation in relation to tidal range) and a combination of statistical neighbourhood analyses (moving average and standard deviation) with varying window sizes, combined with the DEM slope, were used to classify the study area into six specific types of morphological features (i.e. subtidal channel, intertidal flat, intertidal creek, linear bar, swash bar and beach dune). The developed classification method is adapted and applied to a specific case, but it can also be implemented in other cases and environments

    SkiROS:A four tiered architecture for task-level programming of industrial mobile manipulators

    Get PDF
    During the last decades, the methods for intuitive task level programming of robots have become a fundamental point of interest for industrial application. The paper in hand presents SkiROS (Skill-based Robot Operating System) a novel software architecture based on the skills paradigm. The skill paradigm has already been used and tested within the FP7 project TAPAS, and we are going to use it in several new FP7 projects (CARLOS, STAMINA, ACAT). It facilitates task-level programming of mobile manipulators by providing the robot with a set of movement primitives, skills and tasks. This hierarchy brings many advantages, where the most relevant is the separation of control in the layers of hardware abstraction(proxy), multi-sensory control(primitive), object-level abstraction (skill) and planning (task). The definition and the clear division in different abstraction levels allows the implementation of a flexible, highly modular system for the development of cognitive robot tasks

    En undersøgelse af fremmedsprogsundervisning i det almene gymnasium

    Get PDF
    Den globale borger skal kunne klare sig i en stadig mere kompleks verden – en verden der står åben for nye generationer af unge danskere. Den stigende kompleksitet betyder at det danske uddannelsessystem stilles over for nye udfordringer. Danmark er specielt udfordret af globaliseringen: Det danske sprogområde er lille, men samtidig skal vi sikre at de bedste internationale hjerner vælger at arbejde for vores virksomheder, og vi skal kunne agere klogt i den sproglige og kulturelle mangfoldighed globaliseringen indebærer. Udviklingen gennem de seneste årtier har dog indikeret ,at Danmark går i den forkerte retning hvad angår uddannelsessystemets evne til at motivere de unges tilegnelse af kultur- og sprogkompetencer. Fremmedsprogsdisciplinerne, hvorfra såvel fremmedsprogs- som kulturkompetencer forventes at udspringe,opfattes gennemgående som lavstatusfag i gymnasiet og færre og færre unge vælger at dygtiggøre sig inden for de traditionelle fremmedsprogsdiscipliner, bl.a. fordi de ikke kan se at kompetencer fra disse discipliner bidrager væsentligt til en spændende karriere. For fremadrettet at kunne forholde sig til de udfordringer som gymnasiet står overfor i forhold til at gøre kommende medarbejdere interkulturelt handlingskompetente, har Projekt Sprogkernen afdækket fremmedsprogenes udfordringer i gymnasiet og kommer i denne rapport med anbefalinger til en ændring/fornyelse af kernefagligheden i fremmedsprogsundervisningen i de gymnasiale uddannelser

    Robot skills for manufacturing:From concept to industrial deployment

    No full text
    Due to a general shift in manufacturing paradigm from mass production towards mass customization, reconfigurable automation technologies, such as robots, are required. However, current industrial robot solutions are notoriously difficult to program, leading to high changeover times when new products are introduced by manufacturers. In order to compete on global markets, the factories of tomorrow need complete production lines, including automation technologies that can effortlessly be reconfigured or repurposed, when the need arises. In this paper we present the concept of general, self-asserting robot skills for manufacturing. We show how a relatively small set of skills are derived from current factory worker instructions, and how these can be transferred to industrial mobile manipulators. General robot skills can not only be implemented on these robots, but also be intuitively concatenated to program the robots to perform a variety of tasks, through the use of simple task-level programming methods. We demonstrate various approaches to this, extensively tested with several people inexperienced in robotics. We validate our findings through several deployments of the complete robot system in running production facilities at an industrial partner. It follows from these experiments that the use of robot skills, and associated task-level programming framework, is a viable solution to introducing robots that can intuitively and on the fly be programmed to perform new tasks by factory workers

    Integration of Mobile Manipulators in an Industrial Production

    No full text
    Purpose– The purpose of this study has been to evaluate the technology of autonomous mobile manipulation in a real world industrial manufacturing environment. The objective has been to obtain experience in the integration with existing equipment and determine key challenges in maturing the technology to a level of readiness suitable for industry. Despite much research within the topic of industrial mobile manipulation, the technology has not yet found its way to the industry. To mature the technology to a level of readiness suitable for industry real-world experience is crucial. This paper reports from such a real-world industrial experiment with two mobile manipulators.Design/methodology/approach– In the experiment, autonomous industrial mobile manipulators are integrated into the actual manufacturing environment of the pump manufacturer Grundfos. The two robots together solve the task of producing rotors; a task constituted by several sub-tasks ranging from logistics to complex assembly. With a total duration of 10 days, the experiment includes workspace adaptation, safety regulations, rapid robot instruction and running production.Findings– With a setup time of less than one day, it was possible to program both robots to perform the production scenario in collaboration. Despite the success, the experiment clearly demonstrated several topics in need of further research before the technology can be made available to the industry: robustness and cycle time, safety investigations and possibly standardization, and robot and workstation re-configurability.Originality/value– Despite the attention of research around the world, the topic of industrial mobile manipulation has only seen a limited number of real-world integrations. This work reports from a comprehensive integration into a real-world running production and thus reports on the key challenges identified from this integration

    Integration of mobile manipulators in an industrial production

    No full text
    Purpose– The purpose of this study has been to evaluate the technology of autonomous mobile manipulation in a real world industrial manufacturing environment. The objective has been to obtain experience in the integration with existing equipment and determine key challenges in maturing the technology to a level of readiness suitable for industry. Despite much research within the topic of industrial mobile manipulation, the technology has not yet found its way to the industry. To mature the technology to a level of readiness suitable for industry real-world experience is crucial. This paper reports from such a real-world industrial experiment with two mobile manipulators.Design/methodology/approach– In the experiment, autonomous industrial mobile manipulators are integrated into the actual manufacturing environment of the pump manufacturer Grundfos. The two robots together solve the task of producing rotors; a task constituted by several sub-tasks ranging from logistics to complex assembly. With a total duration of 10 days, the experiment includes workspace adaptation, safety regulations, rapid robot instruction and running production.Findings– With a setup time of less than one day, it was possible to program both robots to perform the production scenario in collaboration. Despite the success, the experiment clearly demonstrated several topics in need of further research before the technology can be made available to the industry: robustness and cycle time, safety investigations and possibly standardization, and robot and workstation re-configurability.Originality/value– Despite the attention of research around the world, the topic of industrial mobile manipulation has only seen a limited number of real-world integrations. This work reports from a comprehensive integration into a real-world running production and thus reports on the key challenges identified from this integration
    corecore