3,754 research outputs found

    Facing human rights attributes of copyright in Europe in the context of the EU Digital Single Market

    Get PDF
    The principle of equality as a fundamental norm in law and political philosophy, Jurysprudencja 8., Wojciechowski B., Bekrycht T., Cern K.M., (eds.), Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2017The project was financed by National Science Centre Poland (decision no. DEC-2012/05/B/HS5/01111)

    Local magnetization nucleated by non-magnetic impurities in Fe-based superconductors

    Full text link
    We study impurity-induced magnetic order within a five-band Hubbard model relevant to the normal paramagnetic phase of iron-based superconductors. The existence of the local magnetic order is explained in terms of an impurity-enhancement of states near the Fermi level, and we map out the resulting phase diagram of the existence of magnetization as a function of impurity strength and Coulomb correlations. In particular, the presence of impurity-induced magnetism in only a certain range of potential scattering strengths can be understood from the specific behavior of the impurity resonant state.Comment: 8 pages, 3 figure

    Enhancing Superconductivity by Disorder

    Full text link
    We study two mechanisms for enhancing the superconducting transition temperature Tc by nonmagnetic disorder in both conventional (sign-preserving gaps) and unconventional (sign-changing gaps) superconductors (SC). In the first scenario, relevant to multi-band systems in the dilute impurity limit of both conventional and unconventional SC, we demonstrate how favorable density of states enhancements driven by resonant states in off-Fermi-level bands, lead to significant enhancements of Tc in the condensate formed by the near-Fermi-level bands. The second scenario focuses on the dense impurity limit where random disorder-generated local density of states modulations cause a boosted Tc for conventional SC with short coherence lengths. We analyze the basic physics of both mechanisms within simplified models, and discuss the relevance to existing materials.Comment: 6 pages, 4 figure

    Competing magnetic double-Q phases and superconductivity-induced re-entrance of C2 magnetic stripe order in iron pnictides

    Full text link
    We perform a microscopic theoretical study of the generic properties of competing magnetic phases in iron pnictides. As a function of electron filling and temperature, the magnetic stripe (single-Q) order forms a dome, but competing non-collinear and non-uniform double-Q phases exist at the foot of the dome in agreement with recent experiments. We compute and compare the electronic properties of the different magnetic phases, investigate the role of competing superconductivity, and show how disorder may stabilize double-Q order. Superconductivity is shown to compete more strongly with double-Q magnetic phases, which can lead to re-entrance of the C2 (single-Q) order in agreement with recent thermal expansion measurements on K-doped Ba-122 crystals.Comment: 5 pages, 5 figures, Supplementary Materia

    Enhancing magnetic stripe order in iron pnictides by RKKY exchange interactions

    Full text link
    Recent experimental studies have revealed several unexpected properties of Mn-doped BaFe2As2. These include extension of the stripe-like magnetic (pi,0) phase to high temperatures above a critical Mn concentration only, the presence of diffusive and weakly temperature dependent magnetic (pi,pi) checkerboard scattering, and an apparent absent structural distortion from tetragonal to orthorhombic. Here, we study the effects of magnetic impurities both below and above the N\'eel transition temperature within a real-space five-band model appropriate to the iron pnictides. We show how these experimental findings can be explained by a cooperative behavior of the magnetic impurities and the conduction electrons mediating the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions between them.Comment: 5 pages, 4 figure

    Impurity bound states and disorder-induced orbital and magnetic order in the s+- state of Fe-based superconductors

    Full text link
    We study the presence of impurity bound states within a five-band Hubbard model relevant to iron-based superconductors. In agreement with earlier studies, we find that in the absence of Coulomb correlations there exists a range of repulsive impurity potentials where in-gap states are generated. In the presence of weak correlations, these states are generally pushed to the edges of the gap, whereas for larger correlations the onsite impurity potential induces a local magnetic region which reintroduces the low-energy bound states into the gap

    Impurity-induced sub-gap bound gap states in alkali doped iron chalcogenide superconductors

    Full text link
    Measurements of the local density of states near impurities can be useful for identifying the superconducting gap structure in alkali doped iron chalcogenide superconductors K_xFe_{2-y}Se_2. Here, we study the effects of nonmagnetic and magnetic impurities within a nearest neighbor d-wave and next-nearest neighbor s-wave superconducting state. For both repulsive and attractive nonmagnetic impurities, it is shown that sub-gap bound states exist only for d-wave superconductors with the positions of these bound states depending rather sensitively on the electron doping level. Further, for such disorder Coulomb interactions can lead to local impurity-induced magnetism in the case of d-wave superconductivity. For magnetic impurities, both s-wave and d-wave superconducting states support sub-gap bound states. The above results can be explained by a simple analytic model that provides a semi-quantitative understanding of the variation of the impurity bound states energies as a function of impurity potential and chemical doping level.Comment: 8 pages, 7 figure

    Origin of electronic dimers in the spin-density wave phase of Fe-based superconductors

    Full text link
    We investigate the emergent impurity-induced states arising from point-like scatterers in the spin-density wave phase of iron-based superconductors within a microscopic five-band model. Independent of the details of the band-structure and disorder potential, it is shown how stable magnetic (pi,pi) unidirectional nematogens are formed locally by the impurities. Interestingly, these nematogens exhibit a dimer structure in the electronic density, are directed along the antiferromagnetic a-axis, and have typical lengths of order 10 lattice constants in excellent agreement with recent scanning tunnelling experiments. These electronic dimers provide a natural explanation of the dopant-induced transport anisotropy found e.g. in the 122 iron pnictides.Comment: 5 pages, 4 figure

    Impurity states and cooperative magnetic order in Fe-based superconductors

    Full text link
    We study impurity bound states and impurity-induced order in the superconducting state of LiFeAs within a realistic five-band model based on the band structure and impurity potentials obtained from density functional theory (DFT). In agreement with recent experiments, we find that Co impurities are too weak produce sub-gap bound states, whereas stronger impurities like Cu do. We also obtain the bound state spectrum for magnetic impurities, such as Mn, and show how spin-resolved tunnelling may determine the nature of the various defect sites in iron pnictides, a prerequisite for using impurity bound states as a probe of the ground state pairing symmetry. Lastly we show how impurities pin both orbital and magnetic order, providing an explanation for a growing set of experimental evidence for unusual magnetic phases in doped iron pnictides.Comment: 5 pages, 5 fig
    corecore