9 research outputs found

    Velocity and directionality of the electrohysterographic signal propagation.

    Get PDF
    OBJECTIVE: The initiation of treatment for women with threatening preterm labor requires effective distinction between true and false labor. The electrohysterogram (EHG) has shown great promise in estimating and classifying uterine activity. However, key issues remain unresolved and no clinically usable method has yet been presented using EHG. Recent studies have focused on the propagation velocity of the EHG signals as a potential discriminator between true and false labor. These studies have estimated the propagation velocity of individual spikes of the EHG signals. We therefore focus on estimating the propagation velocity of the entire EHG burst recorded during a contraction in two dimensions. STUDY DESIGN: EHG measurements were performed on six women in active labor at term, and a total of 35 contractions were used for the estimation of propagation velocity. The measurements were performed using a 16-channel two-dimensional electrode grid. The estimates were calculated with a maximum-likelihood approach. RESULTS: The estimated average propagation velocity was 2.18 (±0.68) cm/s. No single preferred direction of propagation was found. CONCLUSION: The propagation velocities estimated in this study are similar to those reported in other studies but with a smaller intra- and inter-patient variation. Thus a potential tool has been established for further studies on true and false labor contractions

    EHG recording. Example of a full EHG recorded by a single electrode (a) and a burst corresponding to a contraction event (b).

    No full text
    <p>EHG recording. Example of a full EHG recorded by a single electrode (a) and a burst corresponding to a contraction event (b).</p

    Visualization of the estimated directions of propagation.

    No full text
    <p>Direction of propagation is estimated for each contraction and marked with a circle.</p

    Estimated velocities.

    No full text
    <p>Mean and standard deviation of the estimated velocities for all patients.</p

    Multi-center evaluation of stability and reproducibility of quantitative MRI measures in healthy calf muscles

    No full text
    The purpose of this study was to evaluate temporal stability, multi-center reproducibility and the influence of covariates on a multimodal MR protocol for quantitative muscle imaging and to facilitate its use as a standardized protocol for evaluation of pathology in skeletal muscle. Quantitative T2, quantitative diffusion and four-point Dixon acquisitions of the calf muscles of both legs were repeated within one hour. Sixty-five healthy volunteers (31 females) were included in one of eight 3-T MR systems. Five traveling subjects were examined in six MR scanners. Average values over all slices of water-T2 relaxation time, proton density fat fraction (PDFF) and diffusion metrics were determined for seven muscles. Temporal stability was tested with repeated measured ANOVA and two-way random intraclass correlation coefficient (ICC). Multi-center reproducibility of traveling volunteers was assessed by a two-way mixed ICC. The factors age, body mass index, gender and muscle were tested for covariance. ICCs of temporal stability were between 0.963 and 0.999 for all parameters. Water-T2 relaxation decreased significantly (P < 10 −3) within one hour by ~ 1 ms. Multi-center reproducibility showed ICCs within 0.879–0.917 with the lowest ICC for mean diffusivity. Different muscles showed the highest covariance, explaining 20–40% of variance for observed parameters. Standardized acquisition and processing of quantitative muscle MRI data resulted in high comparability among centers. The imaging protocol exhibited high temporal stability over one hour except for water T2 relaxation times. These results show that data pooling is feasible and enables assembling data from patients with neuromuscular diseases, paving the way towards larger studies of rare muscle disorders
    corecore