2,025 research outputs found

    Internally heated and fully compressible convection: flow morphology and scaling laws

    Full text link
    In stars and planets natural processes heat convective flows in the bulk of a convective region rather than at hard boundaries. By characterizing how convective dynamics are determined by the strength of an internal heating source we can gain insight into the processes driving astrophysical convection. Internally heated convection has been studied extensively in incompressible fluids, but the effects of stratification and compressibility have not been examined in detail. In this work, we study fully compressible convection driven by a spatially uniform heating source in 2D and 3D Cartesian, hydrodynamic simulations. We use a fixed temperature upper boundary condition which results in a system that is internally heated in the bulk and cooled at the top. We find that the flow speed, as measured by the Mach number, and turbulence, as measured by the Reynolds number, can be independently controlled by separately varying the characteristic temperature gradient from internal heating and the diffusivities. 2D simulations at a fixed Mach number (flow speed) demonstrate consistent power at low wavenumber as diffusivities are decreased. We observe convection where the velocity distribution is skewed towards cold, fast downflows, and that the flow speed is related to the length scale and entropy gradient of the upper boundary where the downflows are driven. We additionally find a heat transport scaling law which is consistent with prior incompressible work.Comment: 22 pages, 12 figures, submitted to Phys. Rev. Fluid

    Rotation reduces convective mixing in Jupiter and other gas giants

    Full text link
    Recent measurements of Jupiter's gravitational moments by the Juno spacecraft and seismology of Saturn's rings suggest that the primordial composition gradients in the deep interior of these planets have persisted since their formation. One possible explanation is the presence of a double-diffusive staircase below the planet's outer convection zone, which inhibits mixing across the deeper layers. However, hydrodynamic simulations have shown that these staircases are not long-lasting and can be disrupted by overshooting convection. In this paper we suggests that planetary rotation could be another factor for the longevity of primordial composition gradients. Using rotational mixing-length theory and 3D hydrodynamic simulations, we demonstrate that rotation significantly reduces both the convective velocity and the mixing of primordial composition gradients. In particular, for Jovian conditions at t∼108 yrst\sim10^{8}~\mathrm{yrs} after formation, rotation reduces the convective velocity by a factor of 6, and in turn, the kinetic energy flux available for mixing gets reduced by a factor of 63∼2006^3\sim 200. This leads to an entrainment timescale that is more than two orders of magnitude longer than without rotation. We encourage future hydrodynamic models of Jupiter and other gas giants to include rapid rotation, because the decrease in the mixing efficiency could explain why Jupiter and Saturn are not fully mixed.Comment: Accepted for publication in the Astrophysical Journal Letter

    Observed Extra Mixing Trends in Red Giants are Reproduced by the Reduced Density Ratio in Thermohaline Zones

    Full text link
    Observations show an almost ubiquitous presence of extra mixing in low-mass upper giant branch stars. The most commonly invoked explanation for this is the thermohaline instability. One dimensional stellar evolution models include prescriptions for thermohaline mixing, but our ability to make direct comparisons between models and observations has thus far been limited. Here, we propose a new framework to facilitate direct comparison: Using carbon to nitrogen measurements from the SDSS-IV APOGEE survey as a probe of mixing and a fluid parameter known as the reduced density ratio from one dimensional stellar evolution programs, we compare the observed amount of extra mixing on the upper giant branch to predicted trends from three-dimensional fluid dynamics simulations. By applying this method, we are able to place empirical constraints on the efficiency of mixing across a range of masses and metallicities. We find that the observed amount of extra mixing is strongly correlated with the reduced density ratio and that trends between reduced density ratio and fundamental stellar parameters are robust across choices for modeling prescription. We show that stars with available mixing data tend to have relatively low density ratios, which should inform the regimes selected for future simulation efforts. Finally, we show that there is increased mixing at low values of the reduced density ratio, which is consistent with current hydrodynamical models of the thermohaline instability. The introduction of this framework sets a new standard for theoretical modeling efforts, as validation for not only the amount of extra mixing, but trends between the degree of extra mixing and fundamental stellar parameters is now possible.Comment: 19 pages, 7 figures, submitted to Ap

    Stellar Convective Penetration: Parameterized Theory and Dynamical Simulations

    Get PDF
    Most stars host convection zones in which heat is transported directly by fluid motion, but the behavior of convective boundaries is not well-understood. Here, we present 3D numerical simulations that exhibit penetration zones: regions where the entire luminosity could be carried by radiation, but where the temperature gradient is approximately adiabatic and convection is present. To parameterize this effect, we define the "penetration parameter" , which compares how far the radiative gradient deviates from the adiabatic gradient on either side of the Schwarzschild convective boundary. Following Roxburgh and Zahn, we construct an energy-based theoretical model in which controls the extent of penetration. We test this theory using 3D numerical simulations that employ a simplified Boussinesq model of stellar convection. The convection is driven by internal heating, and we use a height-dependent radiative conductivity. This allows us to separately specify and the stiffness of the radiative&ndash;convective boundary. We find significant convective penetration in all simulations. Our simple theory describes the simulations well. Penetration zones can take thousands of overturn times to develop, so long simulations or accelerated evolutionary techniques are required. In stars, we expect , and in this regime, our results suggest that convection zones may extend beyond the Schwarzschild boundary by up to &sim;20%&ndash;30% of a mixing length. We present a MESA stellar model of the Sun that employs our parameterization of convective penetration as a proof of concept. Finally, we discuss prospects for extending these results to more realistic stellar contexts. &nbsp;</p

    The photometric variability of massive stars due to gravity waves excited by core convection

    Full text link
    Massive stars die in catastrophic explosions, which seed the interstellar medium with heavy elements and produce neutron stars and black holes. Predictions of the explosion's character and the remnant mass depend on models of the star's evolutionary history. Models of massive star interiors can be empirically constrained by asteroseismic observations of gravity wave oscillations. Recent photometric observations reveal a ubiquitous red noise signal on massive main sequence stars; a hypothesized source of this noise is gravity waves driven by core convection. We present the first 3D simulations of massive star convection extending from the star's center to near its surface, with realistic stellar luminosities. Using these simulations, we make the first prediction of photometric variability due to convectively-driven gravity waves at the surfaces of massive stars, and find that gravity waves produce photometric variability of a lower amplitude and lower characteristic frequency than the observed red noise. We infer that the photometric signal of gravity waves excited by core convection is below the noise limit of current observations, so the red noise must be generated by an alternative process.Comment: As accepted for publication in Nature Astronomy except for final editorial revisions. Supplemental materials available online at https://doi.org/10.5281/zenodo.7764997 . We have also sonified our results to make them more accessible, see https://github.com/evanhanders/gmode_variability_paper/blob/main/sound/gmode_sonification.pd
    • …
    corecore